1
0
Fork 0
QuaPy/eDiscovery/main.py

183 lines
6.3 KiB
Python

import os.path
import sys
import sklearn
from sklearn.base import BaseEstimator
from sklearn.calibration import CalibratedClassifierCV
from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
import quapy as qp
from method.base import BaseQuantifier
from quapy.data import LabelledCollection
from quapy.method.aggregative import EMQ, CC, PACC, PCC, HDy, ACC
from quapy import functional as F
import numpy as np
from itertools import chain
def split_from_index(collection: LabelledCollection, index: np.ndarray):
in_index_set = set(index)
out_index_set = set(range(len(collection))) - in_index_set
out_index = np.asarray(list(out_index_set), dtype=int)
return collection.sampling_from_index(index), collection.sampling_from_index(out_index)
def relevance_sampling_index(pool: LabelledCollection, classifier: BaseEstimator, k: int):
prob = classifier.predict_proba(pool.instances)[:, 1].flatten()
top_relevant_idx = np.argsort(-prob)[:k]
return top_relevant_idx
def uncertainty_sampling_index(pool: LabelledCollection, classifier: BaseEstimator, k: int):
prob = classifier.predict_proba(pool.instances)[:, 1].flatten()
top_uncertain_idx = np.argsort(np.abs(prob - 0.5))[:k]
return top_uncertain_idx
def mix_rel_unc_sampling_index(pool: LabelledCollection, classifier: BaseEstimator, k: int):
relevance_idx = relevance_sampling_index(pool, classifier, k)
uncertanty_idx = uncertainty_sampling_index(pool, classifier, k)
interleave_idx = np.asarray(list(chain.from_iterable(zip(relevance_idx, uncertanty_idx))))
_, unique_idx = np.unique(interleave_idx, return_index=True)
top_interleaved_idx = interleave_idx[np.sort(unique_idx)][:k]
return top_interleaved_idx
def negative_sampling_index(pool: LabelledCollection, classifier: BaseEstimator, k: int):
prob = classifier.predict_proba(pool.instances)[:, 0].flatten()
top_relevant_idx = np.argsort(-prob)[:k]
return top_relevant_idx
def recall(train_prev, pool_prev, train_size, pool_size):
frac_tr_pos = train_prev[1]
frac_te_pos = pool_prev[1]
recall = (frac_tr_pos * train_size) / (frac_tr_pos * train_size + frac_te_pos * pool_size)
return recall
def NewClassifier():
# return CalibratedClassifierCV(LinearSVC(class_weight='balanced'))
return LogisticRegression(class_weight=None)
def NewQuantifier():
return EMQ(CalibratedClassifierCV(NewClassifier()))
def create_dataset(datasetname):
if datasetname == 'imdb.10K.75p':
data = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=5)
collection = data.training.sampling(10000, 0.75)
return collection
elif datasetname == 'RCV1.C4':
X, y = sklearn.datasets.fetch_rcv1(subset='train', return_X_y=True)
y = y.toarray()
prev = y.mean(axis=0).flatten()
# choose the first category having a positive prevalence between [0.1,0.2] (realistic scenario for e-Discovery)
# this category happens to be the cat with id 4
target_cat = np.argwhere(np.logical_and(prev > 0.1, prev < 0.2)).flatten()[0]
print('chosen cat', target_cat)
y = y[:, target_cat].flatten()
return LabelledCollection(X, y)
def estimate_prev_CC(train, pool):
q = CC(NewClassifier()).fit(train)
return q.quantify(pool.instances), q.learner
def estimate_prev_Q(train, pool, classifier):
# q = qp.model_selection.GridSearchQ(
# ACC(LogisticRegression()),
# param_grid={'C':np.logspace(-3,3,7), 'class_weight':[None, 'balanced']},
# sample_size=len(train),
# protocol='app',
# n_prevpoints=21,
# n_repetitions=10)
q = NewQuantifier()
# q = ACC(NewClassifier())
# borrow (supposedly negative) pool documents
# train_pos = train.counts()[1]
# train_negs = train.counts()[0]
# neg_idx = negative_sampling_index(pool, classifier, max(train_pos-train_negs, 5))
# neg_sample = pool.sampling_from_index(neg_idx)
# train_augmented = train + LabelledCollection(neg_sample.instances, [0]*len(neg_sample))
# q.fit(train_augmented)
q.fit(train)
# q.fit(first_train)
# bootstrap_prev = qp.evaluation.natural_prevalence_prediction(q, pool, sample_size=len(train), n_repetitions=50)[1].mean(axis=0).flatten()
prev = q.quantify(pool.instances)
return prev, None
# return q.quantify(pool_instances), None
def tee(msg):
foo.write(msg + '\n')
foo.flush()
print(msg)
datasetname = 'RCV1.C4'
collection = qp.util.pickled_resource(f'./dataset/{datasetname}.pkl', create_dataset, datasetname)
nD = len(collection)
# initial labelled data selection
init_nD = 1000
init_prev = [0.5, 0.5]
idx = collection.sampling_index(init_nD, *init_prev)
train, pool = split_from_index(collection, idx)
#first_train = LabelledCollection(train.instances, train.labels)
k = 100
recall_target = 0.99
outputdir = './results'
qp.util.create_if_not_exist(outputdir)
# sampling_fn, sampling_name = relevance_sampling_index, 'relevance'
sampling_fn, sampling_name = mix_rel_unc_sampling_index, 'mix'
q_name = NewQuantifier().__class__.__name__
experiment_suffix = f'{sampling_name}_{q_name}'
i = 0
with open(os.path.join(outputdir, f'{datasetname}_{experiment_suffix}.csv'), 'wt') as foo:
tee('it\t%\ttr-size\tte-size\ttr-prev\tte-prev\tte-estim\tte-estimCC\tR\tRhat\tRhatCC\tShift\tAE\tAE_CC')
while True:
pool_p_hat_cc, classifier = estimate_prev_CC(train, pool)
pool_p_hat, _ = estimate_prev_Q(train, pool, classifier)
tr_p = train.prevalence()
te_p = pool.prevalence()
nDtr = len(train)
nDte = len(pool)
r_hat_cc = recall(tr_p, pool_p_hat_cc, nDtr, nDte)
r_hat = recall(tr_p, pool_p_hat, nDtr, nDte)
r = recall(tr_p, te_p, nDtr, nDte)
tr_te_shift = qp.error.ae(tr_p, te_p)
progress = 100 * nDtr / nD
q_ae = qp.error.ae(te_p, pool_p_hat)
cc_ae = qp.error.ae(te_p, pool_p_hat_cc)
tee(
f'{i}\t{progress:.2f}\t{nDtr}\t{nDte}\t{tr_p[1]:.3f}\t{te_p[1]:.3f}\t{pool_p_hat[1]:.3f}\t{pool_p_hat_cc[1]:.3f}'
f'\t{r:.3f}\t{r_hat:.3f}\t{r_hat_cc:.3f}\t{tr_te_shift:.5f}\t{q_ae:.4f}\t{cc_ae:.4f}')
if nDte < k:
break
top_relevant_idx = sampling_fn(pool, classifier, k)
selected, pool = split_from_index(pool, top_relevant_idx)
train = train + selected
i += 1