forked from moreo/QuaPy
183 lines
6.3 KiB
Python
183 lines
6.3 KiB
Python
import os.path
|
|
import sys
|
|
|
|
import sklearn
|
|
|
|
from sklearn.base import BaseEstimator
|
|
from sklearn.calibration import CalibratedClassifierCV
|
|
from sklearn.linear_model import LogisticRegression
|
|
from sklearn.svm import LinearSVC
|
|
|
|
import quapy as qp
|
|
from method.base import BaseQuantifier
|
|
from quapy.data import LabelledCollection
|
|
from quapy.method.aggregative import EMQ, CC, PACC, PCC, HDy, ACC
|
|
from quapy import functional as F
|
|
import numpy as np
|
|
from itertools import chain
|
|
|
|
|
|
def split_from_index(collection: LabelledCollection, index: np.ndarray):
|
|
in_index_set = set(index)
|
|
out_index_set = set(range(len(collection))) - in_index_set
|
|
out_index = np.asarray(list(out_index_set), dtype=int)
|
|
return collection.sampling_from_index(index), collection.sampling_from_index(out_index)
|
|
|
|
|
|
def relevance_sampling_index(pool: LabelledCollection, classifier: BaseEstimator, k: int):
|
|
prob = classifier.predict_proba(pool.instances)[:, 1].flatten()
|
|
top_relevant_idx = np.argsort(-prob)[:k]
|
|
return top_relevant_idx
|
|
|
|
|
|
def uncertainty_sampling_index(pool: LabelledCollection, classifier: BaseEstimator, k: int):
|
|
prob = classifier.predict_proba(pool.instances)[:, 1].flatten()
|
|
top_uncertain_idx = np.argsort(np.abs(prob - 0.5))[:k]
|
|
return top_uncertain_idx
|
|
|
|
|
|
def mix_rel_unc_sampling_index(pool: LabelledCollection, classifier: BaseEstimator, k: int):
|
|
relevance_idx = relevance_sampling_index(pool, classifier, k)
|
|
uncertanty_idx = uncertainty_sampling_index(pool, classifier, k)
|
|
interleave_idx = np.asarray(list(chain.from_iterable(zip(relevance_idx, uncertanty_idx))))
|
|
_, unique_idx = np.unique(interleave_idx, return_index=True)
|
|
top_interleaved_idx = interleave_idx[np.sort(unique_idx)][:k]
|
|
return top_interleaved_idx
|
|
|
|
|
|
def negative_sampling_index(pool: LabelledCollection, classifier: BaseEstimator, k: int):
|
|
prob = classifier.predict_proba(pool.instances)[:, 0].flatten()
|
|
top_relevant_idx = np.argsort(-prob)[:k]
|
|
return top_relevant_idx
|
|
|
|
|
|
def recall(train_prev, pool_prev, train_size, pool_size):
|
|
frac_tr_pos = train_prev[1]
|
|
frac_te_pos = pool_prev[1]
|
|
recall = (frac_tr_pos * train_size) / (frac_tr_pos * train_size + frac_te_pos * pool_size)
|
|
return recall
|
|
|
|
|
|
def NewClassifier():
|
|
# return CalibratedClassifierCV(LinearSVC(class_weight='balanced'))
|
|
return LogisticRegression(class_weight=None)
|
|
|
|
|
|
def NewQuantifier():
|
|
return EMQ(CalibratedClassifierCV(NewClassifier()))
|
|
|
|
|
|
def create_dataset(datasetname):
|
|
if datasetname == 'imdb.10K.75p':
|
|
data = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=5)
|
|
collection = data.training.sampling(10000, 0.75)
|
|
return collection
|
|
|
|
elif datasetname == 'RCV1.C4':
|
|
X, y = sklearn.datasets.fetch_rcv1(subset='train', return_X_y=True)
|
|
y = y.toarray()
|
|
prev = y.mean(axis=0).flatten()
|
|
# choose the first category having a positive prevalence between [0.1,0.2] (realistic scenario for e-Discovery)
|
|
# this category happens to be the cat with id 4
|
|
target_cat = np.argwhere(np.logical_and(prev > 0.1, prev < 0.2)).flatten()[0]
|
|
print('chosen cat', target_cat)
|
|
y = y[:, target_cat].flatten()
|
|
return LabelledCollection(X, y)
|
|
|
|
|
|
def estimate_prev_CC(train, pool):
|
|
q = CC(NewClassifier()).fit(train)
|
|
return q.quantify(pool.instances), q.learner
|
|
|
|
|
|
def estimate_prev_Q(train, pool, classifier):
|
|
# q = qp.model_selection.GridSearchQ(
|
|
# ACC(LogisticRegression()),
|
|
# param_grid={'C':np.logspace(-3,3,7), 'class_weight':[None, 'balanced']},
|
|
# sample_size=len(train),
|
|
# protocol='app',
|
|
# n_prevpoints=21,
|
|
# n_repetitions=10)
|
|
|
|
q = NewQuantifier()
|
|
# q = ACC(NewClassifier())
|
|
# borrow (supposedly negative) pool documents
|
|
# train_pos = train.counts()[1]
|
|
# train_negs = train.counts()[0]
|
|
# neg_idx = negative_sampling_index(pool, classifier, max(train_pos-train_negs, 5))
|
|
# neg_sample = pool.sampling_from_index(neg_idx)
|
|
# train_augmented = train + LabelledCollection(neg_sample.instances, [0]*len(neg_sample))
|
|
# q.fit(train_augmented)
|
|
q.fit(train)
|
|
# q.fit(first_train)
|
|
# bootstrap_prev = qp.evaluation.natural_prevalence_prediction(q, pool, sample_size=len(train), n_repetitions=50)[1].mean(axis=0).flatten()
|
|
prev = q.quantify(pool.instances)
|
|
return prev, None
|
|
# return q.quantify(pool_instances), None
|
|
|
|
|
|
def tee(msg):
|
|
foo.write(msg + '\n')
|
|
foo.flush()
|
|
print(msg)
|
|
|
|
|
|
datasetname = 'RCV1.C4'
|
|
collection = qp.util.pickled_resource(f'./dataset/{datasetname}.pkl', create_dataset, datasetname)
|
|
nD = len(collection)
|
|
|
|
# initial labelled data selection
|
|
init_nD = 1000
|
|
init_prev = [0.5, 0.5]
|
|
idx = collection.sampling_index(init_nD, *init_prev)
|
|
train, pool = split_from_index(collection, idx)
|
|
#first_train = LabelledCollection(train.instances, train.labels)
|
|
|
|
k = 100
|
|
recall_target = 0.99
|
|
|
|
outputdir = './results'
|
|
qp.util.create_if_not_exist(outputdir)
|
|
|
|
# sampling_fn, sampling_name = relevance_sampling_index, 'relevance'
|
|
sampling_fn, sampling_name = mix_rel_unc_sampling_index, 'mix'
|
|
q_name = NewQuantifier().__class__.__name__
|
|
|
|
experiment_suffix = f'{sampling_name}_{q_name}'
|
|
|
|
i = 0
|
|
with open(os.path.join(outputdir, f'{datasetname}_{experiment_suffix}.csv'), 'wt') as foo:
|
|
tee('it\t%\ttr-size\tte-size\ttr-prev\tte-prev\tte-estim\tte-estimCC\tR\tRhat\tRhatCC\tShift\tAE\tAE_CC')
|
|
while True:
|
|
|
|
pool_p_hat_cc, classifier = estimate_prev_CC(train, pool)
|
|
pool_p_hat, _ = estimate_prev_Q(train, pool, classifier)
|
|
|
|
tr_p = train.prevalence()
|
|
te_p = pool.prevalence()
|
|
nDtr = len(train)
|
|
nDte = len(pool)
|
|
|
|
r_hat_cc = recall(tr_p, pool_p_hat_cc, nDtr, nDte)
|
|
r_hat = recall(tr_p, pool_p_hat, nDtr, nDte)
|
|
r = recall(tr_p, te_p, nDtr, nDte)
|
|
tr_te_shift = qp.error.ae(tr_p, te_p)
|
|
|
|
progress = 100 * nDtr / nD
|
|
|
|
q_ae = qp.error.ae(te_p, pool_p_hat)
|
|
cc_ae = qp.error.ae(te_p, pool_p_hat_cc)
|
|
|
|
tee(
|
|
f'{i}\t{progress:.2f}\t{nDtr}\t{nDte}\t{tr_p[1]:.3f}\t{te_p[1]:.3f}\t{pool_p_hat[1]:.3f}\t{pool_p_hat_cc[1]:.3f}'
|
|
f'\t{r:.3f}\t{r_hat:.3f}\t{r_hat_cc:.3f}\t{tr_te_shift:.5f}\t{q_ae:.4f}\t{cc_ae:.4f}')
|
|
|
|
if nDte < k:
|
|
break
|
|
|
|
top_relevant_idx = sampling_fn(pool, classifier, k)
|
|
selected, pool = split_from_index(pool, top_relevant_idx)
|
|
train = train + selected
|
|
|
|
i += 1
|