1
0
Fork 0
QuaPy/NewMethods/class_weight_model.py

45 lines
1.5 KiB
Python

from sklearn.linear_model import LogisticRegression
import numpy as np
import quapy as qp
from data import LabelledCollection
from method.base import BaseQuantifier
from quapy.method.aggregative import AggregativeQuantifier, AggregativeProbabilisticQuantifier, CC, ACC, PCC, PACC
class ClassWeightPCC(BaseQuantifier):
def __init__(self):
self.learner = None
def fit(self, data: LabelledCollection, fit_learner=True):
self.train = data
self.prompt = PACC(LogisticRegression()).fit(self.train)
return self
def quantify(self, instances):
guessed_prevalence = self.prompt.quantify(instances)
class_weight = self._get_class_weight(guessed_prevalence)
return PCC(LogisticRegression(class_weight=class_weight)).fit(self.train).quantify(instances)
def _get_class_weight(self, prevalence):
# class_weight = compute_class_weight('balanced', classes=[0, 1], y=mock_y(prevalence))
# return {0: class_weight[1], 1: class_weight[0]}
# weights = prevalence/prevalence.min()
weights = prevalence / self.train.prevalence()
normfactor = weights.min()
if normfactor <= 0:
normfactor = 1E-3
weights /= normfactor
return {0:weights[0], 1:weights[1]}
def set_params(self, **parameters):
pass
def get_params(self, deep=True):
return self.prompt.get_params()
@property
def classes_(self):
return self.train.classes_