1
0
Fork 0
QuaPy/ClassifierAccuracy/utils.py

30 lines
695 B
Python

import matplotlib.pyplot as plt
from pathlib import Path
from os import makedirs
import numpy as np
def plot_diagonal(outpath, xs, predictions:list):
makedirs(Path(outpath).parent, exist_ok=True)
# Create scatter plot
plt.figure(figsize=(10, 10))
plt.xlim(0, 1)
plt.ylim(0, 1)
plt.plot([0, 1], [0, 1], color='black', linestyle='--')
for method_name, ys in predictions:
pear_cor = np.corrcoef(xs, ys)[0, 1]
plt.scatter(xs, ys, label=f'{method_name} {pear_cor:.2f}')
plt.legend()
# Add labels and title
plt.xlabel('True Accuracy')
plt.ylabel('Estimated Accuracy')
# Display the plot
# plt.show()
plt.savefig(outpath)