forked from moreo/QuaPy
225 lines
7.4 KiB
Python
225 lines
7.4 KiB
Python
from copy import deepcopy
|
|
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
from sklearn.linear_model import LogisticRegression, Ridge
|
|
from sklearn.metrics import f1_score
|
|
from sklearn.multiclass import OneVsRestClassifier
|
|
from sklearn.svm import LinearSVC
|
|
|
|
import quapy as qp
|
|
from functional import artificial_prevalence_sampling
|
|
from method.aggregative import PACC, CC, EMQ
|
|
from method.base import BaseQuantifier
|
|
from quapy.data import from_rcv2_lang_file, LabelledCollection
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.preprocessing import MultiLabelBinarizer
|
|
import numpy as np
|
|
|
|
|
|
class MultilabelledCollection:
|
|
def __init__(self, instances, labels):
|
|
assert labels.ndim==2, 'data does not seem to be multilabel'
|
|
self.instances = instances
|
|
self.labels = labels
|
|
self.classes_ = np.arange(labels.shape[1])
|
|
|
|
@classmethod
|
|
def load(cls, path: str, loader_func: callable):
|
|
return MultilabelledCollection(*loader_func(path))
|
|
|
|
def __len__(self):
|
|
return self.instances.shape[0]
|
|
|
|
def prevalence(self):
|
|
# return self.labels.mean(axis=0)
|
|
pos = self.labels.mean(axis=0)
|
|
neg = 1-pos
|
|
return np.asarray([neg, pos]).T
|
|
|
|
def counts(self):
|
|
return self.labels.sum(axis=0)
|
|
|
|
@property
|
|
def n_classes(self):
|
|
return len(self.classes_)
|
|
|
|
@property
|
|
def binary(self):
|
|
return False
|
|
|
|
def __gen_index(self):
|
|
return np.arange(len(self))
|
|
|
|
def sampling_multi_index(self, size, cat, prev=None):
|
|
if prev is None: # no prevalence was indicated; returns an index for uniform sampling
|
|
return np.random.choice(len(self), size, replace=size>len(self))
|
|
aux = LabelledCollection(self.__gen_index(), self.instances[:,cat])
|
|
return aux.sampling_index(size, *[1-prev, prev])
|
|
|
|
def uniform_sampling_multi_index(self, size):
|
|
return np.random.choice(len(self), size, replace=size>len(self))
|
|
|
|
def uniform_sampling(self, size):
|
|
unif_index = self.uniform_sampling_multi_index(size)
|
|
return self.sampling_from_index(unif_index)
|
|
|
|
def sampling(self, size, category, prev=None):
|
|
prev_index = self.sampling_multi_index(size, category, prev)
|
|
return self.sampling_from_index(prev_index)
|
|
|
|
def sampling_from_index(self, index):
|
|
documents = self.instances[index]
|
|
labels = self.labels[index, :]
|
|
return MultilabelledCollection(documents, labels)
|
|
|
|
def train_test_split(self, train_prop=0.6, random_state=None):
|
|
tr_docs, te_docs, tr_labels, te_labels = \
|
|
train_test_split(self.instances, self.labels, train_size=train_prop, random_state=random_state)
|
|
return MultilabelledCollection(tr_docs, tr_labels), MultilabelledCollection(te_docs, te_labels)
|
|
|
|
def artificial_sampling_generator(self, sample_size, category, n_prevalences=101, repeats=1):
|
|
dimensions = 2
|
|
for prevs in artificial_prevalence_sampling(dimensions, n_prevalences, repeats):
|
|
yield self.sampling(sample_size, category, prevs[1])
|
|
|
|
def artificial_sampling_index_generator(self, sample_size, category, n_prevalences=101, repeats=1):
|
|
dimensions = 2
|
|
for prevs in artificial_prevalence_sampling(dimensions, n_prevalences, repeats):
|
|
yield self.sampling_multi_index(sample_size, category, prevs[1])
|
|
|
|
def natural_sampling_generator(self, sample_size, repeats=100):
|
|
for _ in range(repeats):
|
|
yield self.uniform_sampling(sample_size)
|
|
|
|
def natural_sampling_index_generator(self, sample_size, repeats=100):
|
|
for _ in range(repeats):
|
|
yield self.uniform_sampling_multi_index(sample_size)
|
|
|
|
def asLabelledCollection(self, category):
|
|
return LabelledCollection(self.instances, self.labels[:,category])
|
|
|
|
def genLabelledCollections(self):
|
|
for c in self.classes_:
|
|
yield self.asLabelledCollection(c)
|
|
|
|
@property
|
|
def Xy(self):
|
|
return self.instances, self.labels
|
|
|
|
|
|
class MultilabelQuantifier:
|
|
def __init__(self, q:BaseQuantifier):
|
|
self.q = q
|
|
self.estimators = {}
|
|
|
|
def fit(self, data:MultilabelledCollection):
|
|
self.classes_ = data.classes_
|
|
for cat, lc in enumerate(data.genLabelledCollections()):
|
|
self.estimators[cat] = deepcopy(self.q).fit(lc)
|
|
return self
|
|
|
|
def quantify(self, instances):
|
|
pos_prevs = np.zeros(len(self.classes_), dtype=float)
|
|
for c in self.classes_:
|
|
pos_prevs[c] = self.estimators[c].quantify(instances)[1]
|
|
neg_prevs = 1-pos_prevs
|
|
return np.asarray([neg_prevs, pos_prevs]).T
|
|
|
|
|
|
class MultilabelRegressionQuantification:
|
|
def __init__(self, base_quantifier=CC(LinearSVC()), regression='ridge', n_samples=500, sample_size=500):
|
|
self.estimator = MultilabelQuantifier(base_quantifier)
|
|
self.regression = regression
|
|
self.n_samples = n_samples
|
|
self.sample_size = sample_size
|
|
|
|
def fit(self, data:MultilabelledCollection):
|
|
self.classes_ = data.classes_
|
|
tr, te = data.train_test_split()
|
|
self.estimator.fit(tr)
|
|
Xs = []
|
|
ys = []
|
|
for sample in te.natural_sampling_generator(sample_size=self.sample_size, repeats=self.n_samples):
|
|
ys.append(sample.prevalence()[:,1])
|
|
Xs.append(self.estimator.quantify(sample.instances)[:,1])
|
|
Xs = np.asarray(Xs)
|
|
ys = np.asarray(ys)
|
|
print(f'Xs in {Xs.shape}')
|
|
print(f'ys in {ys.shape}')
|
|
self.reg = Ridge().fit(Xs, ys) #normalize?
|
|
return self
|
|
|
|
def quantify(self, instances):
|
|
Xs = self.estimator.quantify(instances)[:,1].reshape(1,-1)
|
|
adjusted = self.reg.predict(Xs)
|
|
adjusted = np.clip(adjusted, 0, 1)
|
|
adjusted = adjusted.flatten()
|
|
neg_prevs = 1-adjusted
|
|
return np.asarray([neg_prevs, adjusted]).T
|
|
|
|
|
|
|
|
# read documents
|
|
path = f'./crosslingual_data/rcv12/en.small.txt'
|
|
docs, cats = from_rcv2_lang_file(path)
|
|
|
|
# split train-test
|
|
tr_docs, te_docs, tr_cats, te_cats = train_test_split(docs, cats, test_size=0.2, random_state=42)
|
|
|
|
# generate Y matrices
|
|
mlb = MultiLabelBinarizer()
|
|
ytr = mlb.fit_transform([cats.split(' ') for cats in tr_cats])
|
|
yte = mlb.transform([cats.split(' ') for cats in te_cats])
|
|
# retain 10 most populated categories
|
|
most_populated = np.argsort(ytr.sum(axis=0))[-10:]
|
|
ytr = ytr[:,most_populated]
|
|
yte = yte[:,most_populated]
|
|
|
|
tfidf = TfidfVectorizer(min_df=5)
|
|
Xtr = tfidf.fit_transform(tr_docs)
|
|
Xte = tfidf.transform(te_docs)
|
|
|
|
train = MultilabelledCollection(Xtr, ytr)
|
|
test = MultilabelledCollection(Xte, yte)
|
|
|
|
model = MultilabelQuantifier(PACC(LogisticRegression()))
|
|
model.fit(train)
|
|
estim_prevs = model.quantify(test.instances)
|
|
true_prevs = test.prevalence()
|
|
print('PACC:')
|
|
print(estim_prevs)
|
|
print(true_prevs)
|
|
|
|
|
|
model = MultilabelQuantifier(CC(LogisticRegression()))
|
|
model.fit(train)
|
|
estim_prevs = model.quantify(test.instances)
|
|
true_prevs = test.prevalence()
|
|
print('CC:')
|
|
print(estim_prevs)
|
|
print(true_prevs)
|
|
|
|
|
|
# model = MultilabelQuantifier(EMQ(LogisticRegression()))
|
|
# model.fit(train)
|
|
# estim_prevs = model.quantify(test.instances)
|
|
# true_prevs = test.prevalence()
|
|
# print('EMQ:')
|
|
# print(estim_prevs)
|
|
# print(true_prevs)
|
|
|
|
model = MultilabelRegressionQuantification(sample_size=200, n_samples=500)
|
|
model.fit(train)
|
|
estim_prevs = model.quantify(test.instances)
|
|
true_prevs = test.prevalence()
|
|
print('MRQ:')
|
|
print(estim_prevs)
|
|
print(true_prevs)
|
|
|
|
qp.environ['SAMPLE_SIZE']=100
|
|
mae = qp.error.mae(true_prevs, estim_prevs)
|
|
print(mae)
|
|
|
|
|
|
|