1
0
Fork 0
QuaPy/docs/build/html/index.html

245 lines
14 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<title>Welcome to QuaPys documentation! &#8212; QuaPy 0.1.7 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/bizstyle.css" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/bizstyle.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Installation" href="Installation.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="Installation.html" title="Installation"
accesskey="N">next</a> |</li>
<li class="nav-item nav-item-0"><a href="#">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Welcome to QuaPys documentation!</a></li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<section id="welcome-to-quapy-s-documentation">
<h1>Welcome to QuaPys documentation!<a class="headerlink" href="#welcome-to-quapy-s-documentation" title="Permalink to this heading"></a></h1>
<p>QuaPy is an open source framework for Quantification (a.k.a. Supervised Prevalence Estimation)
written in Python.</p>
<section id="introduction">
<h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this heading"></a></h2>
<p>QuaPy roots on the concept of data sample, and provides implementations of most important concepts
in quantification literature, such as the most important quantification baselines, many advanced
quantification methods, quantification-oriented model selection, many evaluation measures and protocols
used for evaluating quantification methods.
QuaPy also integrates commonly used datasets and offers visualization tools for facilitating the analysis and
interpretation of results.</p>
<section id="a-quick-example">
<h3>A quick example:<a class="headerlink" href="#a-quick-example" title="Permalink to this heading"></a></h3>
<p>The following script fetchs a Twitter dataset, trains and evaluates an
<cite>Adjusted Classify &amp; Count</cite> model in terms of the <cite>Mean Absolute Error</cite> (MAE)
between the class prevalences estimated for the test set and the true prevalences
of the test set.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="kn">import</span> <span class="n">LogisticRegression</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_twitter</span><span class="p">(</span><span class="s1">&#39;semeval16&#39;</span><span class="p">)</span>
<span class="c1"># create an &quot;Adjusted Classify &amp; Count&quot; quantifier</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">method</span><span class="o">.</span><span class="n">aggregative</span><span class="o">.</span><span class="n">ACC</span><span class="p">(</span><span class="n">LogisticRegression</span><span class="p">())</span>
<span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">training</span><span class="p">)</span>
<span class="n">estim_prevalences</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">quantify</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">test</span><span class="o">.</span><span class="n">instances</span><span class="p">)</span>
<span class="n">true_prevalences</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">test</span><span class="o">.</span><span class="n">prevalence</span><span class="p">()</span>
<span class="n">error</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">error</span><span class="o">.</span><span class="n">mae</span><span class="p">(</span><span class="n">true_prevalences</span><span class="p">,</span> <span class="n">estim_prevalences</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;Mean Absolute Error (MAE)=</span><span class="si">{</span><span class="n">error</span><span class="si">:</span><span class="s1">.3f</span><span class="si">}</span><span class="s1">&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Quantification is useful in scenarios of prior probability shift. In other
words, we would not be interested in estimating the class prevalences of the test set if
we could assume the IID assumption to hold, as this prevalence would simply coincide with the
class prevalence of the training set. For this reason, any Quantification model
should be tested across samples characterized by different class prevalences.
QuaPy implements sampling procedures and evaluation protocols that automates this endeavour.
See the <a class="reference internal" href="Evaluation.html"><span class="doc">Evaluation</span></a> for detailed examples.</p>
</section>
<section id="features">
<h3>Features<a class="headerlink" href="#features" title="Permalink to this heading"></a></h3>
<ul class="simple">
<li><p>Implementation of most popular quantification methods (Classify-&amp;-Count variants, Expectation-Maximization, SVM-based variants for quantification, HDy, QuaNet, and Ensembles).</p></li>
<li><p>Versatile functionality for performing evaluation based on artificial sampling protocols.</p></li>
<li><p>Implementation of most commonly used evaluation metrics (e.g., MAE, MRAE, MSE, NKLD, etc.).</p></li>
<li><dl class="simple">
<dt>Popular datasets for Quantification (textual and numeric) available, including:</dt><dd><ul>
<li><p>32 UCI Machine Learning datasets.</p></li>
<li><p>11 Twitter Sentiment datasets.</p></li>
<li><p>3 Reviews Sentiment datasets.</p></li>
<li><p>4 tasks from LeQua competition (_new in v0.1.7!_)</p></li>
</ul>
</dd>
</dl>
</li>
<li><p>Native supports for binary and single-label scenarios of quantification.</p></li>
<li><p>Model selection functionality targeting quantification-oriented losses.</p></li>
<li><p>Visualization tools for analysing results.</p></li>
</ul>
<div class="toctree-wrapper compound">
<p class="caption" role="heading"><span class="caption-text">Contents:</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="Installation.html">Installation</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Installation.html#requirements">Requirements</a></li>
<li class="toctree-l2"><a class="reference internal" href="Installation.html#svm-perf-with-quantification-oriented-losses">SVM-perf with quantification-oriented losses</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Datasets.html">Datasets</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Datasets.html#reviews-datasets">Reviews Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="Datasets.html#twitter-sentiment-datasets">Twitter Sentiment Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="Datasets.html#uci-machine-learning">UCI Machine Learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="Datasets.html#lequa-datasets">LeQua Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="Datasets.html#adding-custom-datasets">Adding Custom Datasets</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Evaluation.html">Evaluation</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Evaluation.html#error-measures">Error Measures</a></li>
<li class="toctree-l2"><a class="reference internal" href="Evaluation.html#evaluation-protocols">Evaluation Protocols</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Protocols.html">Protocols</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Protocols.html#artificial-prevalence-protocol">Artificial-Prevalence Protocol</a></li>
<li class="toctree-l2"><a class="reference internal" href="Protocols.html#sampling-from-the-unit-simplex-the-uniform-prevalence-protocol-upp">Sampling from the unit-simplex, the Uniform-Prevalence Protocol (UPP)</a></li>
<li class="toctree-l2"><a class="reference internal" href="Protocols.html#natural-prevalence-protocol">Natural-Prevalence Protocol</a></li>
<li class="toctree-l2"><a class="reference internal" href="Protocols.html#other-protocols">Other protocols</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Methods.html">Quantification Methods</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Methods.html#aggregative-methods">Aggregative Methods</a></li>
<li class="toctree-l2"><a class="reference internal" href="Methods.html#meta-models">Meta Models</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Model-Selection.html">Model Selection</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Model-Selection.html#targeting-a-quantification-oriented-loss">Targeting a Quantification-oriented loss</a></li>
<li class="toctree-l2"><a class="reference internal" href="Model-Selection.html#targeting-a-classification-oriented-loss">Targeting a Classification-oriented loss</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Plotting.html">Plotting</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Plotting.html#diagonal-plot">Diagonal Plot</a></li>
<li class="toctree-l2"><a class="reference internal" href="Plotting.html#quantification-bias">Quantification bias</a></li>
<li class="toctree-l2"><a class="reference internal" href="Plotting.html#error-by-drift">Error by Drift</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules.html">API Developers documentation</a><ul>
<li class="toctree-l2"><a class="reference internal" href="quapy.html">quapy package</a></li>
</ul>
</li>
</ul>
</div>
</section>
</section>
</section>
<section id="indices-and-tables">
<h1>Indices and tables<a class="headerlink" href="#indices-and-tables" title="Permalink to this heading"></a></h1>
<ul class="simple">
<li><p><a class="reference internal" href="genindex.html"><span class="std std-ref">Index</span></a></p></li>
<li><p><a class="reference internal" href="py-modindex.html"><span class="std std-ref">Module Index</span></a></p></li>
<li><p><a class="reference internal" href="search.html"><span class="std std-ref">Search Page</span></a></p></li>
</ul>
</section>
<div class="clearer"></div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<div>
<h3><a href="#">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Welcome to QuaPys documentation!</a><ul>
<li><a class="reference internal" href="#introduction">Introduction</a><ul>
<li><a class="reference internal" href="#a-quick-example">A quick example:</a></li>
<li><a class="reference internal" href="#features">Features</a></li>
</ul>
</li>
</ul>
</li>
<li><a class="reference internal" href="#indices-and-tables">Indices and tables</a></li>
</ul>
</div>
<div>
<h4>Next topic</h4>
<p class="topless"><a href="Installation.html"
title="next chapter">Installation</a></p>
</div>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/index.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>document.getElementById('searchbox').style.display = "block"</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="Installation.html" title="Installation"
>next</a> |</li>
<li class="nav-item nav-item-0"><a href="#">QuaPy 0.1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">Welcome to QuaPys documentation!</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2021, Alejandro Moreo.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 5.3.0.
</div>
</body>
</html>