1
0
Fork 0
QuaPy/TweetSentQuant/gen_tables.py

197 lines
6.5 KiB
Python

import quapy as qp
import numpy as np
from os import makedirs
import sys, os
import pickle
from experiments import result_path
from tabular import Table
tables_path = './tables'
MAXTONE = 50 # sets the intensity of the maximum color reached by the worst (red) and best (green) results
makedirs(tables_path, exist_ok=True)
sample_size = 100
qp.environ['SAMPLE_SIZE'] = sample_size
nice = {
'mae':'AE',
'mrae':'RAE',
'ae':'AE',
'rae':'RAE',
'svmkld': 'SVM(KLD)',
'svmnkld': 'SVM(NKLD)',
'svmq': 'SVM(Q)',
'svmae': 'SVM(AE)',
'svmnae': 'SVM(NAE)',
'svmmae': 'SVM(AE)',
'svmmrae': 'SVM(RAE)',
'quanet': 'QuaNet',
'hdy': 'HDy',
'dys': 'DyS',
'svmperf':'',
'sanders': 'Sanders',
'semeval13': 'SemEval13',
'semeval14': 'SemEval14',
'semeval15': 'SemEval15',
'semeval16': 'SemEval16',
'Average': 'Average'
}
def nicerm(key):
return '\mathrm{'+nice[key]+'}'
def load_Gao_Sebastiani_previous_results():
def rename(method):
old2new = {
'kld': 'svmkld',
'nkld': 'svmnkld',
'qbeta2': 'svmq',
'em': 'sld'
}
return old2new.get(method, method)
gao_seb_results = {}
with open('./Gao_Sebastiani_results.txt', 'rt') as fin:
lines = fin.readlines()
for line in lines[1:]:
line = line.strip()
parts = line.lower().split()
if len(parts) == 4:
dataset, method, ae, rae = parts
else:
method, ae, rae = parts
learner, method = method.split('-')
method = rename(method)
gao_seb_results[f'{dataset}-{method}-ae'] = float(ae)
gao_seb_results[f'{dataset}-{method}-rae'] = float(rae)
return gao_seb_results
def get_ranks_from_Gao_Sebastiani():
gao_seb_results = load_Gao_Sebastiani_previous_results()
datasets = set([key.split('-')[0] for key in gao_seb_results.keys()])
methods = np.sort(np.unique([key.split('-')[1] for key in gao_seb_results.keys()]))
ranks = {}
for metric in ['ae', 'rae']:
for dataset in datasets:
scores = [gao_seb_results[f'{dataset}-{method}-{metric}'] for method in methods]
order = np.argsort(scores)
sorted_methods = methods[order]
for i, method in enumerate(sorted_methods):
ranks[f'{dataset}-{method}-{metric}'] = i+1
for method in methods:
rankave = np.mean([ranks[f'{dataset}-{method}-{metric}'] for dataset in datasets])
ranks[f'Average-{method}-{metric}'] = rankave
return ranks, gao_seb_results
def save_table(path, table):
print(f'saving results in {path}')
with open(path, 'wt') as foo:
foo.write(table)
datasets = qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST
evaluation_measures = [qp.error.ae, qp.error.rae]
gao_seb_methods = ['cc', 'acc', 'pcc', 'pacc', 'sld', 'svmq', 'svmkld', 'svmnkld']
new_methods = []
def experiment_errors(dataset, method, loss):
path = result_path(dataset, method, 'm'+loss if not loss.startswith('m') else loss)
if os.path.exists(path):
true_prevs, estim_prevs, _, _, _, _ = pickle.load(open(path, 'rb'))
err_fn = getattr(qp.error, loss)
errors = err_fn(true_prevs, estim_prevs)
return errors
return None
gao_seb_ranks, gao_seb_results = get_ranks_from_Gao_Sebastiani()
for i, eval_func in enumerate(evaluation_measures):
# Tables evaluation scores for AE and RAE (two tables)
# ----------------------------------------------------
eval_name = eval_func.__name__
added_methods = ['svm' + eval_name] + new_methods
methods = gao_seb_methods + added_methods
nold_methods = len(gao_seb_methods)
nnew_methods = len(added_methods)
# fill data table
table = Table(rows=datasets, cols=methods)
for dataset in datasets:
for method in methods:
table.add(dataset, method, experiment_errors(dataset, method, eval_name))
# write the latex table
tabular = """
\\begin{tabularx}{\\textwidth}{|c||""" + ('Y|'*nold_methods)+ '|' + ('Y|'*nnew_methods) + """} \hline
& \multicolumn{"""+str(nold_methods)+"""}{c||}{Methods tested in~\cite{Gao:2016uq}} &
\multicolumn{"""+str(nnew_methods)+"""}{c|}{} \\\\ \hline
"""
rowreplace={dataset: nice.get(dataset, dataset.upper()) for dataset in datasets}
colreplace={method:'\side{' + nice.get(method, method.upper()) +'$^{' + nicerm(eval_name) + '}$} ' for method in methods}
tabular += table.latexTabular(rowreplace=rowreplace, colreplace=colreplace)
tabular += "\n\end{tabularx}"
save_table(f'./tables/tab_results_{eval_name}.new.tex', tabular)
# Tables ranks for AE and RAE (two tables)
# ----------------------------------------------------
methods = gao_seb_methods
# fill the data table
ranktable = Table(rows=datasets, cols=methods, missing='--')
for dataset in datasets:
for method in methods:
ranktable.add(dataset, method, values=table.get(dataset, method, 'rank'))
# write the latex table
tabular = """
\\begin{tabularx}{\\textwidth}{|c||""" + ('Y|' * len(gao_seb_methods)) + """} \hline
& \multicolumn{""" + str(nold_methods) + """}{c|}{Methods tested in~\cite{Gao:2016uq}} \\\\ \hline
"""
for method in methods:
tabular += ' & \side{' + nice.get(method, method.upper()) +'$^{' + nicerm(eval_name) + '}$} '
tabular += '\\\\\hline\n'
for dataset in datasets:
tabular += nice.get(dataset, dataset.upper()) + ' '
for method in methods:
newrank = ranktable.get(dataset, method)
oldrank = gao_seb_ranks[f'{dataset}-{method}-{eval_name}']
if newrank != '--':
newrank = f'{int(newrank)}'
color = ranktable.get_color(dataset, method)
if color == '--':
color = ''
tabular += ' & ' + f'{newrank}' + f' ({oldrank}) ' + color
tabular += '\\\\\hline\n'
tabular += '\hline\n'
tabular += 'Average '
for method in methods:
newrank = ranktable.get_average(method)
oldrank = gao_seb_ranks[f'Average-{method}-{eval_name}']
if newrank != '--':
newrank = f'{newrank:.1f}'
oldrank = f'{oldrank:.1f}'
color = ranktable.get_average(method, 'color')
if color == '--':
color = ''
tabular += ' & ' + f'{newrank}' + f' ({oldrank}) ' + color
tabular += '\\\\\hline\n'
tabular += "\end{tabularx}"
save_table(f'./tables/tab_rank_{eval_name}.new.tex', tabular)
print("[Done]")