1
0
Fork 0
QuaPy/test.py

151 lines
6.4 KiB
Python

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from sklearn.svm import LinearSVC, LinearSVR
import quapy as qp
import quapy.functional as F
import sys
import numpy as np
from NewMethods.methods import AveragePoolQuantification
from classification.methods import PCALR
from classification.neural import NeuralClassifierTrainer, CNNnet
from quapy.model_selection import GridSearchQ
#qp.datasets.fetch_UCIDataset('acute.b', verbose=True)
#sys.exit(0)
qp.environ['SAMPLE_SIZE'] = 500
#param_grid = {'C': np.logspace(-3,3,7), 'class_weight': ['balanced', None]}
param_grid = {'C': np.logspace(0,3,4), 'class_weight': ['balanced']}
max_evaluations = 500
sample_size = qp.environ['SAMPLE_SIZE']
binary = False
svmperf_home = './svm_perf_quantification'
if binary:
dataset = qp.datasets.fetch_reviews('kindle', tfidf=True, min_df=5)
#qp.data.preprocessing.index(dataset, inplace=True)
else:
dataset = qp.datasets.fetch_twitter('gasp', for_model_selection=False, min_df=5, pickle=True)
#dataset.training = dataset.training.sampling(sample_size, 0.2, 0.5, 0.3)
print(f'dataset loaded: #training={len(dataset.training)} #test={len(dataset.test)}')
# training a quantifier
# learner = LogisticRegression(max_iter=1000)
#model = qp.method.aggregative.ClassifyAndCount(learner)
# model = qp.method.aggregative.AdjustedClassifyAndCount(learner)
# model = qp.method.aggregative.ProbabilisticClassifyAndCount(learner)
# model = qp.method.aggregative.ProbabilisticAdjustedClassifyAndCount(learner)
# model = qp.method.aggregative.HellingerDistanceY(learner)
# model = qp.method.aggregative.ExpectationMaximizationQuantifier(learner)
# model = qp.method.aggregative.ExplicitLossMinimisationBinary(svmperf_home, loss='q', C=100)
# model = qp.method.aggregative.SVMQ(svmperf_home, C=1)
#learner = PCALR()
#learner = NeuralClassifierTrainer(CNNnet(dataset.vocabulary_size, dataset.n_classes))
#print(learner.get_params())
#model = qp.method.meta.QuaNet(learner, sample_size, device='cpu')
#learner = GridSearchCV(LogisticRegression(max_iter=1000), param_grid=param_grid, n_jobs=-1, verbose=1)
#learner = LogisticRegression(max_iter=1000)
# model = qp.method.aggregative.ClassifyAndCount(learner)
learner = LogisticRegression(max_iter=1000)
model = qp.method.meta.EPACC(learner, size=10, red_size=5, max_sample_size=200)
# param_grid={'C':[1,10,100]},
# optim='mae', param_mod_sel={'sample_size':100, 'n_prevpoints':21, 'n_repetitions':5},
# policy='ptr', n_jobs=1)
# regressor = LinearSVR(max_iter=10000)
# param_grid = {'C': np.logspace(-1,3,5)}
# model = AveragePoolQuantification(regressor, sample_size, trials=5000, n_components=500, zscore=False)
# model = qp.method.meta.EHDy(learner, param_grid=param_grid, optim='mae',
# sample_size=sample_size, eval_budget=max_evaluations//10, n_jobs=-1)
#model = qp.method.aggregative.ClassifyAndCount(learner)
# model = qp.method.meta.QuaNet(PCALR(n_components=100, max_iter=1000),
# sample_size=100,
# patience=10,
# tr_iter_per_poch=500, va_iter_per_poch=100, #lstm_nlayers=2, lstm_hidden_size=64,
# ff_layers=[500, 250, 50],
# checkpointdir='./checkpoint', device='cuda')
if qp.isbinary(model) and not qp.isbinary(dataset):
model = qp.method.aggregative.OneVsAll(model)
# Model fit and Evaluation on the test data
# ----------------------------------------------------------------------------
print(f'fitting model {model.__class__.__name__}')
#train, val = dataset.training.split_stratified(0.6)
#model.fit(train, val_split=val)
model.fit(dataset.training)
# estimating class prevalences
# print('quantifying')
# prevalences_estim = model.quantify(dataset.test.instances)
# prevalences_true = dataset.test.prevalence()
#
# evaluation (one single prediction)
# error = qp.error.mae(prevalences_true, prevalences_estim)
#
# print(f'Evaluation in test (1 eval)')
# print(f'true prevalence {F.strprev(prevalences_true)}')
# print(f'estim prevalence {F.strprev(prevalences_estim)}')
# print(f'mae={error:.3f}')
# Model fit and Evaluation according to the artificial sampling protocol
# ----------------------------------------------------------------------------
n_prevpoints = F.get_nprevpoints_approximation(combinations_budget=max_evaluations, n_classes=dataset.n_classes)
n_evaluations = F.num_prevalence_combinations(n_prevpoints, dataset.n_classes)
print(f'the prevalence interval [0,1] will be split in {n_prevpoints} prevalence points for each class, so that\n'
f'the requested maximum number of sample evaluations ({max_evaluations}) is not exceeded.\n'
f'For the {dataset.n_classes} classes this dataset has, this will yield a total of {n_evaluations} evaluations.')
true_prev, estim_prev = qp.evaluation.artificial_sampling_prediction(model, dataset.test, sample_size, n_prevpoints)
#qp.error.SAMPLE_SIZE = sample_size
print(f'Evaluation according to the artificial sampling protocol ({len(true_prev)} evals)')
for error in qp.error.QUANTIFICATION_ERROR:
score = error(true_prev, estim_prev)
print(f'{error.__name__}={score:.5f}')
sys.exit(0)
# Model selection and Evaluation according to the artificial sampling protocol
# ----------------------------------------------------------------------------
model_selection = GridSearchQ(model,
param_grid=param_grid,
sample_size=sample_size,
eval_budget=max_evaluations//10,
error='mae',
refit=True,
verbose=True,
timeout=60*60)
model = model_selection.fit(dataset.training, val_split=0.3)
#model = model_selection.fit(train, validation=val)
print(f'Model selection: best_params = {model_selection.best_params_}')
print(f'param scores:')
for params, score in model_selection.param_scores_.items():
print(f'\t{params}: {score:.5f}')
true_prev, estim_prev = qp.evaluation.artificial_sampling_prediction(model, dataset.test, sample_size, n_prevpoints)
print(f'After model selection: Evaluation according to the artificial sampling protocol ({len(true_prev)} evals)')
for error in qp.error.QUANTIFICATION_ERROR:
score = error(true_prev, estim_prev)
print(f'{error.__name__}={score:.5f}')