1
0
Fork 0
QuaPy/docs/build/html/searchindex.js

1 line
92 KiB
JavaScript

Search.setIndex({"docnames": ["Datasets", "Evaluation", "Installation", "Methods", "Model-Selection", "Plotting", "index", "modules", "quapy", "quapy.classification", "quapy.data", "quapy.method"], "filenames": ["Datasets.md", "Evaluation.md", "Installation.rst", "Methods.md", "Model-Selection.md", "Plotting.md", "index.rst", "modules.rst", "quapy.rst", "quapy.classification.rst", "quapy.data.rst", "quapy.method.rst"], "titles": ["Datasets", "Evaluation", "Installation", "Quantification Methods", "Model Selection", "Plotting", "Welcome to QuaPy\u2019s documentation!", "quapy", "quapy package", "quapy.classification package", "quapy.data package", "quapy.method package"], "terms": {"quapi": [0, 1, 2, 3, 4, 5], "make": [0, 1, 3, 8, 11], "avail": [0, 1, 2, 3, 5, 6, 9, 11], "sever": [0, 10], "have": [0, 1, 2, 3, 4, 5, 8, 10, 11], "been": [0, 3, 4, 5, 8, 9, 10, 11], "us": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11], "quantif": [0, 1, 6, 8, 9, 10, 11], "literatur": [0, 1, 4, 6], "well": [0, 3, 4, 5, 11], "an": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11], "interfac": [0, 1, 11], "allow": [0, 1, 2, 3, 5, 8, 9, 10, 11], "anyon": 0, "import": [0, 1, 3, 4, 5, 6, 10, 11], "A": [0, 3, 8, 9, 10, 11], "object": [0, 8, 9, 10, 11], "i": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11], "roughli": 0, "pair": [0, 8], "labelledcollect": [0, 3, 4, 8, 10, 11], "one": [0, 1, 3, 4, 5, 8, 10, 11], "plai": 0, "role": 0, "train": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11], "set": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11], "anoth": [0, 1, 3, 5, 10], "test": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11], "class": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11], "consist": [0, 4, 5, 8, 9, 10, 11], "iter": [0, 8, 11], "instanc": [0, 3, 4, 5, 6, 8, 9, 10, 11], "label": [0, 3, 4, 5, 6, 8, 9, 10, 11], "thi": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11], "handl": 0, "most": [0, 3, 5, 6, 8, 10, 11], "sampl": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11], "function": [0, 1, 3, 4, 5, 6, 7, 9, 10, 11], "take": [0, 3, 5, 8, 10, 11], "look": [0, 1, 3, 5, 11], "follow": [0, 1, 3, 4, 5, 6, 8, 11], "code": [0, 3, 4, 5, 9], "qp": [0, 1, 3, 4, 5, 6, 8, 10, 11], "f": [0, 1, 3, 4, 5, 6, 10], "1st": 0, "posit": [0, 3, 5, 8, 10, 11], "document": [0, 1, 3, 5, 9, 10, 11], "2nd": 0, "onli": [0, 3, 5, 8, 9, 10, 11], "neg": [0, 5, 8, 11], "neutral": 0, "3rd": 0, "2": [0, 1, 3, 5, 8, 10, 11], "0": [0, 1, 3, 4, 5, 8, 9, 10, 11], "1": [0, 1, 3, 4, 5, 8, 9, 10, 11], "print": [0, 1, 3, 4, 6, 9, 10], "strprev": [0, 1, 8], "preval": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11], "prec": [0, 8], "output": [0, 1, 3, 4, 9, 10, 11], "show": [0, 1, 3, 4, 5, 8, 9, 10, 11], "digit": 0, "precis": [0, 1, 8], "17": 0, "50": [0, 5, 8, 11], "33": [0, 5, 8], "One": [0, 1, 3, 11], "can": [0, 1, 2, 3, 4, 5, 8, 10, 11], "easili": [0, 2, 5, 9], "produc": [0, 1, 5, 8], "new": [0, 3, 8, 9, 10], "desir": [0, 1, 10], "sample_s": [0, 1, 3, 4, 5, 8, 11], "10": [0, 1, 4, 5, 8, 9, 11], "prev": [0, 1, 8, 10], "4": [0, 1, 3, 4, 5, 10, 11], "5": [0, 1, 3, 4, 5, 8, 9, 10, 11], "which": [0, 1, 3, 4, 5, 8, 9, 10, 11], "40": [0, 3, 4, 11], "made": [0, 2, 8, 10, 11], "across": [0, 1, 4, 5, 6, 8, 11], "differ": [0, 1, 3, 4, 5, 6, 8, 10, 11], "run": [0, 1, 2, 3, 4, 5, 8, 10, 11], "e": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11], "g": [0, 1, 3, 4, 6, 8, 10, 11], "method": [0, 1, 4, 5, 6, 8], "same": [0, 3, 5, 8, 10, 11], "exact": [0, 10], "retain": [0, 3, 9, 11], "index": [0, 3, 6, 8, 9, 10, 11], "gener": [0, 1, 3, 4, 5, 8, 9, 10, 11], "sampling_index": [0, 10], "sampling_from_index": [0, 10], "also": [0, 1, 2, 3, 5, 6, 8, 9], "implement": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11], "artifici": [0, 1, 3, 4, 5, 6, 8], "protocol": [0, 3, 4, 5, 6, 7, 10, 11], "via": [0, 2, 3, 8, 9, 11], "python": [0, 6], "": [0, 1, 3, 4, 5, 8, 9, 10, 11], "seri": [0, 10], "equidist": [0, 8], "rang": [0, 5, 8, 11], "entir": [0, 3, 4, 5, 8], "spectrum": [0, 1, 4, 5, 8], "simplex": [0, 8], "space": [0, 4, 8, 9], "artificial_sampling_gener": 0, "100": [0, 1, 3, 4, 5, 8, 9, 10, 11], "n_preval": [0, 8], "each": [0, 1, 3, 4, 5, 8, 9, 10, 11], "valid": [0, 1, 3, 4, 5, 8, 9, 10, 11], "combin": [0, 1, 4, 8, 11], "origin": [0, 3, 8, 10], "from": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11], "split": [0, 3, 4, 5, 8, 9, 10, 11], "point": [0, 1, 3, 8, 10], "25": [0, 5, 8, 9, 11], "75": [0, 5, 8], "00": [0, 1, 4], "see": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11], "evalu": [0, 3, 4, 5, 6, 7, 9, 10, 11], "wiki": [0, 3], "further": [0, 1, 3, 9, 10, 11], "detail": [0, 1, 3, 6, 9, 10, 11], "how": [0, 1, 3, 4, 5, 8, 10, 11], "properli": 0, "three": [0, 5], "about": [0, 5, 8, 10], "kindl": [0, 1, 3, 5, 10, 11], "devic": [0, 3, 5, 9, 11], "harri": 0, "potter": 0, "known": [0, 3, 4, 8, 11], "imdb": [0, 5, 10], "movi": 0, "fetch": [0, 6], "unifi": [0, 11], "For": [0, 1, 5, 6, 8, 10], "exampl": [0, 1, 3, 4, 5, 8, 9, 10, 11], "fetch_review": [0, 1, 3, 4, 5, 10, 11], "These": [0, 9], "esuli": [0, 2, 3, 9, 10, 11], "moreo": [0, 3, 4, 10, 11], "sebastiani": [0, 3, 4, 10, 11], "2018": [0, 3, 10], "octob": [0, 3], "recurr": [0, 3, 10], "neural": [0, 8, 10], "network": [0, 8, 9, 10, 11], "In": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11], "proceed": [0, 3, 10], "27th": [0, 3, 10], "acm": [0, 3, 10, 11], "intern": [0, 3, 9, 10], "confer": [0, 3, 9, 10], "inform": [0, 1, 3, 4, 8, 9, 10, 11], "knowledg": [0, 3, 10], "manag": [0, 3, 10], "pp": [0, 3, 9], "1775": [0, 3], "1778": [0, 3], "The": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11], "list": [0, 5, 8, 9, 10, 11], "id": [0, 3, 10], "reviews_sentiment_dataset": [0, 10], "some": [0, 1, 3, 5, 8, 10, 11], "statist": [0, 1, 8, 11], "fhe": 0, "ar": [0, 1, 3, 4, 5, 8, 9, 10, 11], "summar": 0, "below": [0, 2, 3, 5, 8, 10], "size": [0, 1, 3, 8, 9, 10, 11], "type": [0, 3, 8, 10, 11], "hp": [0, 3, 4, 10], "9533": 0, "18399": 0, "018": 0, "982": 0, "065": 0, "935": 0, "text": [0, 3, 8, 9, 10, 11], "3821": [0, 10], "21591": [0, 10], "081": [0, 10], "919": [0, 10], "063": [0, 10], "937": [0, 10], "25000": 0, "500": [0, 1, 4, 5, 11], "11": [0, 1, 6, 8], "analysi": [0, 3, 6, 10], "access": [0, 3, 10, 11], "were": 0, "tf": [0, 10], "idf": 0, "format": [0, 5, 10, 11], "present": [0, 3, 10], "two": [0, 1, 3, 4, 5, 8, 10, 11], "val": [0, 9, 10], "model": [0, 1, 5, 6, 8, 9, 11], "select": [0, 3, 6, 8, 10, 11], "purpos": [0, 11], "exemplifi": 0, "load": [0, 3, 8, 10, 11], "fetch_twitt": [0, 3, 6, 10], "gasp": [0, 10], "for_model_select": [0, 10], "true": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11], "gao": [0, 3, 10, 11], "w": [0, 3, 10], "2015": [0, 2, 3, 9, 11], "august": 0, "tweet": [0, 3, 10], "classif": [0, 1, 3, 6, 8, 10, 11], "ieee": 0, "advanc": [0, 6], "social": [0, 3, 10], "mine": [0, 3], "asonam": 0, "97": 0, "104": 0, "semeval13": [0, 10], "semeval14": [0, 10], "semeval15": [0, 10], "share": [0, 10], "semev": 0, "mean": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11], "would": [0, 1, 3, 5, 6, 10, 11], "get": [0, 1, 5, 8, 9, 10, 11], "when": [0, 1, 3, 4, 5, 8, 9, 10], "request": [0, 8, 10, 11], "ani": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11], "them": [0, 3, 10, 11], "consult": [0, 1], "twitter_sentiment_datasets_test": [0, 10], "9": [0, 1, 3, 5, 8], "replac": [0, 3, 10], "twitter_sentiment_datasets_train": [0, 10], "found": [0, 3, 4, 8, 9, 10], "featur": [0, 10], "3": [0, 1, 3, 5, 6, 8, 9, 10, 11], "8788": 0, "3765": 0, "694582": 0, "421": 0, "496": 0, "082": [0, 1], "407": 0, "507": 0, "086": 0, "spars": [0, 10], "hcr": [0, 3, 10], "1594": 0, "798": 0, "222046": 0, "546": 0, "211": 0, "243": 0, "640": 0, "167": 0, "193": 0, "omd": [0, 10], "1839": 0, "787": 0, "199151": 0, "463": 0, "271": 0, "266": 0, "437": 0, "283": [0, 1], "280": 0, "sander": [0, 10], "2155": 0, "923": 0, "229399": 0, "161": 0, "691": 0, "148": 0, "164": [0, 3], "688": 0, "11338": 0, "3813": 0, "1215742": 0, "159": 0, "470": 0, "372": 0, "158": 0, "430": 0, "412": 0, "1853": 0, "109": 0, "361": 0, "530": 0, "2390": 0, "153": 0, "413": 0, "434": 0, "semeval16": [0, 6, 10], "8000": 0, "2000": 0, "889504": 0, "157": 0, "351": 0, "492": 0, "163": [0, 1], "341": 0, "497": 0, "sst": [0, 10], "2971": 0, "1271": 0, "376132": 0, "261": 0, "452": 0, "288": 0, "207": 0, "481": 0, "312": 0, "wa": [0, 3, 5, 8, 10, 11], "2184": 0, "936": 0, "248563": 0, "305": 0, "414": 0, "281": 0, "282": 0, "446": 0, "272": 0, "wb": [0, 10], "4259": 0, "1823": 0, "404333": 0, "270": 0, "392": 0, "337": 0, "274": 0, "335": 0, "32": [0, 6], "repositori": [0, 10], "p\u00e9rez": [0, 3, 10, 11], "g\u00e1llego": [0, 3, 10, 11], "p": [0, 3, 8, 9, 10, 11], "quevedo": [0, 3, 10], "j": [0, 3, 10, 11], "r": [0, 3, 8, 10], "del": [0, 3, 10], "coz": [0, 3, 10], "2017": [0, 3, 10, 11], "ensembl": [0, 6, 10, 11], "problem": [0, 3, 5, 8, 10, 11], "characteriz": [0, 3, 10], "chang": [0, 1, 3, 10], "distribut": [0, 3, 5, 8, 10, 11], "case": [0, 1, 3, 4, 5, 8, 9, 10, 11], "studi": [0, 3, 10], "fusion": [0, 3, 10], "34": [0, 3, 10, 11], "87": [0, 3, 10], "doe": [0, 2, 3, 8, 11], "exactli": 0, "coincid": [0, 6], "et": [0, 2, 9, 10, 11], "al": [0, 2, 9, 10, 11], "sinc": [0, 1, 3, 5, 10, 11], "we": [0, 1, 3, 4, 5, 6, 10], "unabl": 0, "find": [0, 4, 11], "diabet": 0, "phonem": 0, "call": [0, 1, 5, 8, 10, 11], "fetch_ucidataset": [0, 3, 10], "yeast": [0, 10], "verbos": [0, 1, 4, 8, 9, 10, 11], "return": [0, 1, 3, 4, 5, 8, 9, 10, 11], "randomli": [0, 10], "drawn": [0, 1, 4, 8, 10], "stratifi": [0, 3, 9, 10, 11], "manner": [0, 9, 11], "whole": [0, 1, 3, 4, 8, 9], "collect": [0, 8, 9, 10], "70": 0, "30": [0, 1, 3, 11], "respect": [0, 1, 5, 8, 11], "option": [0, 1, 3, 5, 10, 11], "indic": [0, 1, 3, 4, 5, 8, 9, 10, 11], "descript": [0, 10], "should": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11], "standard": [0, 1, 5, 8, 9, 10, 11], "paper": [0, 3, 9, 11], "submit": 0, "kfcv": [0, 9, 10, 11], "order": [0, 2, 3, 5, 8, 10, 11], "accommod": 0, "practic": [0, 4], "could": [0, 1, 3, 4, 5, 6], "first": [0, 1, 2, 3, 5, 8, 10, 11], "instanti": [0, 1, 3, 4, 8, 9, 11], "creat": [0, 6, 8, 11], "time": [0, 1, 3, 8, 10, 11], "fetch_ucilabelledcollect": [0, 10], "nfold": [0, 8, 10], "nrepeat": [0, 10], "abov": [0, 3, 5, 8], "conduct": [0, 8], "2x5fcv": 0, "all": [0, 1, 2, 3, 5, 8, 9, 11], "come": [0, 8, 10, 11], "numer": [0, 1, 3, 6, 10, 11], "form": [0, 8, 10, 11], "dens": [0, 11], "matric": [0, 5, 10], "acut": 0, "120": 0, "6": [0, 1, 3, 5, 10], "508": 0, "b": [0, 8, 10, 11], "583": 0, "417": 0, "balanc": [0, 4, 11], "625": 0, "539": 0, "461": 0, "922": 0, "078": 0, "breast": 0, "cancer": 0, "683": 0, "350": 0, "650": 0, "cmc": 0, "1473": 0, "573": 0, "427": 0, "774": 0, "226": 0, "653": 0, "347": 0, "ctg": 0, "2126": 0, "22": [0, 3, 9, 10], "222": [0, 9], "778": 0, "861": 0, "139": 0, "917": 0, "083": 0, "german": 0, "1000": [0, 4, 11], "24": [0, 9], "300": [0, 1, 9], "700": 0, "haberman": [0, 3], "306": 0, "735": 0, "265": 0, "ionospher": 0, "641": 0, "359": 0, "iri": 0, "150": 0, "667": 0, "333": 0, "mammograph": 0, "830": 0, "514": 0, "486": 0, "pageblock": 0, "5473": 0, "979": 0, "021": 0, "semeion": 0, "1593": 0, "256": [0, 9], "901": 0, "099": 0, "sonar": 0, "208": 0, "60": 0, "534": 0, "466": 0, "spambas": 0, "4601": 0, "57": 0, "606": 0, "394": 0, "spectf": 0, "267": 0, "44": 0, "794": 0, "206": 0, "tictacto": 0, "958": 0, "transfus": 0, "748": 0, "762": 0, "238": 0, "wdbc": 0, "569": 0, "627": 0, "373": 0, "wine": 0, "178": 0, "13": [0, 9], "669": 0, "331": 0, "601": 0, "399": 0, "730": 0, "q": [0, 2, 3, 8, 9, 11], "red": 0, "1599": 0, "465": 0, "535": 0, "white": 0, "4898": 0, "665": 0, "1484": 0, "8": [0, 1, 5, 10, 11], "711": 0, "289": 0, "download": [0, 2, 3, 8, 10], "automat": [0, 1], "thei": [0, 3, 11], "store": [0, 9, 10, 11], "quapy_data": [0, 8], "folder": [0, 10, 11], "faster": [0, 10], "reus": [0, 3, 8, 10], "howev": [0, 4, 5], "requir": [0, 1, 3, 6, 9], "special": [0, 5, 10], "action": 0, "moment": [0, 3], "fulli": [0, 8], "autom": [0, 3, 6], "cardiotocographi": 0, "excel": 0, "file": [0, 5, 8, 9, 10, 11], "user": [0, 1, 5], "instal": [0, 3, 6, 9, 11], "xlrd": [0, 2], "modul": [0, 1, 3, 5, 6, 7], "open": [0, 6, 10], "page": [0, 2, 6], "block": [0, 8], "need": [0, 3, 8, 10, 11], "unix": 0, "compress": 0, "extens": [0, 2, 5], "z": [0, 10], "directli": [0, 1, 3], "doabl": 0, "packag": [0, 2, 3, 6, 7], "like": [0, 1, 3, 5, 8, 9, 10, 11], "gzip": 0, "zip": [0, 5], "uncompress": 0, "o": [0, 8], "depend": [0, 1, 4, 5, 8, 11], "softwar": 0, "manual": 0, "do": [0, 1, 3, 4, 8, 9, 10, 11], "invok": [0, 1, 3, 8, 10], "provid": [0, 3, 5, 6, 10, 11], "loader": [0, 10], "simpl": [0, 3, 5, 11], "deal": 0, "t": [0, 1, 3, 8, 9, 11], "pre": [0, 3], "n": [0, 1, 8, 9, 11], "second": [0, 1, 3, 5, 8, 10], "represent": [0, 3, 8, 9, 11], "col": [0, 10], "int": [0, 5, 8, 10, 11], "float": [0, 3, 8, 9, 10, 11], "charg": [0, 10], "classmethod": [0, 8, 10, 11], "def": [0, 1, 3, 5, 8], "cl": 0, "path": [0, 3, 5, 8, 9, 10, 11], "str": [0, 8, 10, 11], "loader_func": [0, 10], "callabl": [0, 8, 10, 11], "defin": [0, 3, 8, 9, 10, 11], "argument": [0, 1, 3, 5, 8, 10, 11], "initi": [0, 9, 11], "particular": [0, 1, 3, 11], "receiv": [0, 3, 5], "addition": 0, "number": [0, 1, 3, 5, 8, 9, 10, 11], "specifi": [0, 1, 3, 5, 8, 9, 10], "otherwis": [0, 3, 8, 10], "infer": [0, 10], "least": [0, 10], "pass": [0, 1, 5, 8, 9, 11], "along": [0, 3, 8, 11], "train_path": [0, 10], "my_data": 0, "dat": [0, 9], "test_path": [0, 10], "my_custom_load": 0, "rb": 0, "fin": 0, "preprocess": [0, 1, 3, 8, 11], "includ": [0, 1, 3, 5, 6, 10, 11], "text2tfidf": [0, 1, 3, 10], "tfidf": [0, 4, 5, 10], "vector": [0, 8, 9, 10, 11], "reduce_column": [0, 10], "reduc": [0, 10], "column": [0, 10], "base": [0, 3, 6, 8, 9], "term": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11], "frequenc": [0, 10, 11], "transform": [0, 9, 10, 11], "valu": [0, 1, 3, 8, 9, 10, 11], "score": [0, 1, 4, 8, 9, 10], "subtract": [0, 8, 10], "normal": [0, 1, 3, 8, 10, 11], "deviat": [0, 1, 5, 8, 10], "so": [0, 1, 3, 5, 8, 9, 10, 11], "zero": [0, 8], "unit": [0, 8], "varianc": [0, 5], "textual": [0, 6, 10], "token": [0, 9, 10], "appeal": 1, "tool": [1, 6], "scenario": [1, 3, 4, 5, 6], "dataset": [1, 3, 4, 5, 6, 8, 9, 11], "shift": [1, 4, 6, 8, 9, 11], "particularli": 1, "prior": [1, 3, 4, 5, 6, 8, 11], "probabl": [1, 3, 4, 5, 6, 8, 9, 11], "That": [1, 4], "interest": [1, 5, 6, 8], "estim": [1, 3, 5, 6, 8, 9, 10, 11], "aris": 1, "under": 1, "belief": 1, "those": [1, 3, 4, 5, 8, 9, 11], "might": [1, 8, 10], "ones": [1, 3, 5, 8, 10, 11], "observ": [1, 11], "dure": [1, 5, 11], "other": [1, 3, 5, 6, 8, 10, 11], "word": [1, 3, 6, 9, 10, 11], "simpli": [1, 2, 3, 4, 5, 6, 8, 11], "predictor": 1, "assum": [1, 6, 11], "unlik": [1, 4, 8], "machin": [1, 4, 6, 9], "learn": [1, 2, 3, 4, 6, 8, 9, 10, 11], "govern": 1, "iid": [1, 5, 6], "assumpt": [1, 5, 6], "brief": [1, 10], "dedic": [1, 10], "explain": [1, 5], "here": [1, 11], "mae": [1, 4, 6, 8, 9, 11], "absolut": [1, 3, 5, 6, 8, 11], "mrae": [1, 6, 8, 9, 11], "rel": [1, 3, 8, 10, 11], "mse": [1, 3, 6, 8, 11], "squar": [1, 3, 8], "mkld": [1, 8, 11], "kullback": [1, 3, 8, 11], "leibler": [1, 3, 8, 11], "diverg": [1, 3, 8, 11], "mnkld": [1, 8, 11], "ae": [1, 2, 5, 8, 11], "rae": [1, 2, 8, 11], "se": [1, 8], "kld": [1, 2, 8, 9, 11], "nkld": [1, 2, 6, 8, 9, 11], "individu": [1, 3], "without": [1, 3, 8, 10], "averag": [1, 3, 8, 10, 11], "acc": [1, 3, 5, 6, 8, 11], "accuraci": [1, 5, 8, 11], "f1e": [1, 8], "f1": [1, 8, 9], "true_prev": [1, 5, 8], "prevs_hat": [1, 8], "ndarrai": [1, 3, 8, 10, 11], "contain": [1, 2, 3, 5, 8, 9, 10, 11], "smooth": [1, 8], "stabil": [1, 11], "third": [1, 5], "ep": [1, 8], "none": [1, 4, 8, 9, 10, 11], "paramet": [1, 3, 4, 8, 9, 10, 11], "epsilon": [1, 8, 11], "tradition": 1, "2t": [1, 8], "past": 1, "either": [1, 3, 8, 11], "environ": [1, 3, 4, 5, 8, 11], "variabl": [1, 3, 5, 8, 10], "onc": [1, 3, 5, 8, 10], "ommit": 1, "thereaft": 1, "recommend": [1, 5, 11], "np": [1, 3, 4, 5, 8, 10, 11], "asarrai": 1, "let": [1, 3, 11], "estim_prev": [1, 5, 8], "ae_": 1, "3f": [1, 6], "200": [1, 9], "600": 1, "914": 1, "final": [1, 3, 5, 11], "possibl": [1, 3, 8, 11], "string": [1, 8, 10, 11], "error_funct": 1, "from_nam": [1, 8], "accord": [1, 3, 4, 8, 9, 10, 11], "fix": [1, 4], "cover": [1, 4, 8, 9], "full": [1, 8], "contrast": 1, "natur": [1, 8], "despit": 1, "introduc": 1, "approxim": [1, 5, 8, 9], "preserv": [1, 5, 8], "procol": 1, "equal": [1, 8, 11], "distant": [1, 8], "interv": [1, 5, 8], "n_prevpoint": [1, 4, 5, 8], "determin": [1, 4, 5, 8], "constrain": [1, 5, 8, 10], "obtain": [1, 4, 8, 9, 11], "66": [1, 11], "given": [1, 3, 4, 8, 9, 10, 11], "num_prevalence_combin": [1, 8], "21": [1, 3, 5, 8], "n_class": [1, 3, 8, 9, 10, 11], "n_repeat": [1, 8], "1771": 1, "note": [1, 3, 4, 5, 8, 10], "last": [1, 3, 5, 8, 9, 10], "typic": [1, 4, 5, 8, 9, 10, 11], "singl": [1, 3, 6, 11], "higher": [1, 5], "comput": [1, 3, 5, 8, 11], "perform": [1, 3, 4, 5, 6, 8, 9, 11], "signific": 1, "instead": [1, 3, 4, 8, 10, 11], "work": [1, 3, 4, 5, 8, 10, 11], "wai": [1, 11], "around": [1, 10], "maximum": [1, 8, 9, 11], "budg": 1, "close": [1, 10], "than": [1, 4, 5, 8, 9, 10], "budget": [1, 4], "achiev": [1, 3, 4, 5], "get_nprevpoints_approxim": [1, 8], "5000": [1, 5], "4960": 1, "cost": 1, "sometim": 1, "cumbersom": 1, "control": [1, 4, 8], "overal": 1, "experi": [1, 2, 3, 4, 5, 8], "rather": [1, 4], "By": [1, 3, 8], "avoid": [1, 8], "lead": [1, 10], "closer": 1, "surpass": 1, "script": [1, 2, 3, 6, 11], "pacc": [1, 3, 5, 8, 11], "reli": [1, 3, 8, 11], "logist": [1, 3, 9, 11], "regressor": [1, 3], "classifi": [1, 4, 5, 6, 8, 9, 11], "variou": [1, 5], "metric": [1, 3, 4, 6, 8, 11], "sklearn": [1, 3, 4, 5, 6, 9, 10, 11], "linear_model": [1, 3, 4, 6, 9], "logisticregress": [1, 3, 4, 6, 9, 11], "data": [1, 3, 4, 5, 6, 8, 9, 11], "min_df": [1, 3, 4, 5, 10, 11], "inplac": [1, 3, 10, 11], "lr": [1, 3, 9, 11], "aggreg": [1, 4, 5, 6, 8], "fit": [1, 3, 4, 5, 6, 8, 9, 10, 11], "df": 1, "artificial_sampling_report": 1, "mani": [1, 3, 4, 5, 6, 8, 11], "extract": [1, 8, 10], "categori": [1, 8], "n_repetit": [1, 4, 5], "n_job": [1, 3, 4, 8, 9, 10, 11], "parallel": [1, 3, 8, 9, 10, 11], "worker": [1, 8, 9, 10, 11], "cpu": [1, 9, 11], "random_se": [1, 8], "42": 1, "random": [1, 3, 4, 5, 8, 10], "seed": [1, 4, 8, 10], "replic": [1, 4, 8], "error_metr": [1, 4, 8], "line": [1, 3, 8], "result": [1, 2, 3, 4, 5, 6, 11], "report": 1, "panda": [1, 2], "datafram": 1, "displai": [1, 5, 8, 9], "just": [1, 3], "clearer": 1, "shown": [1, 5, 8], "convert": [1, 3, 8, 9, 10, 11], "repres": [1, 3, 5, 8, 10, 11], "decim": 1, "default": [1, 3, 8, 9, 10, 11], "pd": 1, "set_opt": 1, "expand_frame_repr": 1, "fals": [1, 3, 5, 8, 9, 10, 11], "map": [1, 9, 11], "000": 1, "000e": 1, "091": 1, "909": 1, "009": 1, "048": 1, "426e": 1, "04": 1, "837": 1, "037": 1, "114": 1, "633e": 1, "03": 1, "7": [1, 5, 8, 9, 11], "717": 1, "017": 1, "041": 1, "383e": 1, "366": 1, "634": 1, "034": 1, "070": 1, "412e": 1, "459": 1, "541": 1, "387e": 1, "565": 1, "435": 1, "035": 1, "073": 1, "535e": 1, "654": 1, "346": 1, "046": 1, "108": 1, "701e": 1, "725": 1, "275": 1, "075": 1, "235": 1, "515e": 1, "02": 1, "858": 1, "142": 1, "042": 1, "229": 1, "740e": 1, "945": 1, "055": 1, "27": [1, 3, 9], "357": 1, "219e": 1, "578": 1, "dtype": [1, 10], "float64": 1, "artificial_sampling_ev": [1, 4], "artificial_sampling_predict": [1, 5], "arrai": [1, 3, 5, 8, 9, 10, 11], "pip": 2, "older": 2, "version": [2, 8, 9, 11], "scikit": [2, 3, 4, 8, 9, 10, 11], "numpi": [2, 4, 8, 9], "scipi": [2, 10], "pytorch": [2, 11], "quanet": [2, 6, 9, 11], "svmperf": [2, 3, 8, 11], "patch": [2, 3, 9, 11], "joblib": [2, 11], "tqdm": 2, "matplotlib": [2, 8], "involv": [2, 5, 8], "you": [2, 3], "appli": [2, 3, 4, 5, 8, 9, 10, 11], "ext": 2, "compil": [2, 3], "sourc": [2, 3, 6, 9], "prepare_svmperf": [2, 3], "sh": [2, 3], "job": 2, "directori": [2, 8, 9, 10, 11], "svm_perf_quantif": [2, 3], "optim": [2, 3, 4, 8, 9, 11], "measur": [2, 3, 4, 5, 6, 8, 11], "propos": [2, 3, 11], "barranquero": [2, 3, 9, 11], "extend": [2, 3, 8, 11], "former": [2, 11], "categor": [3, 10], "belong": [3, 11], "non": [3, 11], "group": 3, "though": [3, 8], "plan": 3, "add": [3, 4, 8, 10], "more": [3, 5, 11], "futur": 3, "character": [3, 6], "fact": [3, 5], "product": [3, 10], "quantifi": [3, 4, 5, 6, 8, 10, 11], "shoud": 3, "basequantifi": [3, 8, 11], "abstract": [3, 8, 9, 10, 11], "abstractmethod": 3, "self": [3, 8, 9, 10, 11], "set_param": [3, 8, 9, 11], "get_param": [3, 8, 9, 11], "deep": [3, 8, 11], "familiar": 3, "structur": [3, 11], "inspir": 3, "reason": [3, 5, 6], "why": 3, "ha": [3, 4, 5, 8, 9, 10, 11], "adopt": [3, 4, 10], "respond": 3, "predict": [3, 4, 5, 8, 9, 11], "input": [3, 5, 8, 9, 11], "element": [3, 10, 11], "while": [3, 5, 9, 10, 11], "selector": 3, "process": [3, 4, 8], "hyperparamet": [3, 8, 11], "search": [3, 4, 6, 8, 11], "part": [3, 10], "aggregativequantifi": [3, 11], "must": [3, 10, 11], "fit_learn": 3, "classif_predict": [3, 11], "mention": 3, "befor": [3, 8, 9, 10, 11], "inde": [3, 4], "alreadi": [3, 8, 11], "preclassifi": 3, "maintain": [3, 11], "through": [3, 8], "properti": [3, 8, 9, 10, 11], "learner": [3, 4, 9, 11], "extern": 3, "probabilist": [3, 9, 11], "inherit": 3, "aggregativeprobabilisticquantifi": [3, 11], "posterior": [3, 8, 9, 11], "crisp": [3, 8, 11], "decis": [3, 8, 9, 11], "hard": [3, 9], "classif_posterior": [3, 11], "posterior_prob": [3, 11], "advantag": [3, 11], "procedur": [3, 6, 8], "veri": [3, 5], "effici": 3, "everi": [3, 8, 11], "leverag": 3, "speed": [3, 11], "up": [3, 4, 8, 9, 11], "over": [3, 4, 8], "customarili": [3, 4], "done": 3, "four": 3, "cc": [3, 5, 11], "simplest": 3, "deliv": [3, 11], "adjust": [3, 6, 8, 11], "pcc": [3, 4, 5, 11], "soft": 3, "serv": [3, 8, 10], "complet": [3, 5, 11], "equip": [3, 5], "svm": [3, 5, 6, 9, 10, 11], "linearsvc": [3, 5, 10], "pickl": [3, 8, 10, 11], "alia": [3, 8, 10, 11], "classifyandcount": [3, 11], "estim_preval": [3, 6, 11], "rate": [3, 8, 9, 11], "binari": [3, 5, 6, 8, 9, 10, 11], "init": 3, "addit": 3, "val_split": [3, 4, 9, 11], "integ": [3, 8, 9, 10, 11], "k": [3, 6, 8, 9, 10, 11], "fold": [3, 8, 10, 11], "cross": [3, 8, 9, 10, 11], "specif": [3, 4, 8], "held": [3, 4, 8, 9, 11], "out": [3, 4, 5, 8, 9, 10, 11], "postpon": 3, "constructor": 3, "prevail": 3, "overrid": 3, "illustr": [3, 4, 5], "seem": 3, "calibr": [3, 8], "calibratedclassifiercv": 3, "base_estim": 3, "cv": [3, 4], "predict_proba": [3, 9, 11], "As": [3, 4], "calibratedclassifi": 3, "except": [3, 8, 11], "rais": [3, 8, 11], "lastli": 3, "everyth": 3, "said": 3, "aboud": 3, "sld": [3, 11], "expectationmaximizationquantifi": [3, 11], "describ": [3, 8, 11], "saeren": [3, 11], "m": [3, 8, 11], "latinn": [3, 11], "decaesteck": [3, 11], "c": [3, 4, 8, 9, 10, 11], "2002": 3, "priori": 3, "14": 3, "41": 3, "attempt": [3, 11], "although": [3, 4, 5, 11], "improv": [3, 8, 9, 11], "rank": [3, 9], "almost": 3, "alwai": [3, 4, 5, 11], "among": 3, "effect": 3, "carri": [3, 10, 11], "gonz\u00e1lez": 3, "castro": 3, "v": [3, 8, 9, 11], "alaiz": 3, "rodr\u0131": 3, "guez": 3, "alegr": 3, "2013": 3, "scienc": 3, "218": 3, "146": 3, "It": [3, 4, 5, 8], "allia": 3, "hellingerdistancei": [3, 11], "mixtur": [3, 8, 11], "previou": 3, "overridden": [3, 11], "proport": [3, 4, 9, 10, 11], "taken": [3, 8, 9, 10], "itself": [3, 8, 11], "accept": 3, "elm": [3, 11], "famili": [3, 11], "target": [3, 5, 6, 8, 9, 11], "orient": [3, 6, 8, 11], "joachim": [3, 9, 11], "svmq": [3, 11], "d\u00edez": 3, "reliabl": 3, "pattern": 3, "recognit": 3, "48": 3, "591": 3, "604": 3, "svmkld": [3, 11], "multivari": [3, 9], "transact": 3, "discoveri": 3, "articl": [3, 4], "svmnkld": [3, 11], "svmae": [3, 11], "error": [3, 4, 6, 7, 9, 11], "svmrae": [3, 11], "what": 3, "nowadai": 3, "consid": [3, 5, 8, 9, 10, 11], "behav": [3, 5], "If": [3, 5, 8, 10, 11], "want": [3, 4], "custom": [3, 6, 10], "modifi": [3, 8], "assign": [3, 10], "Then": 3, "re": [3, 4, 9, 10], "thing": 3, "your": 3, "svmperf_hom": 3, "valid_loss": [3, 9, 11], "mycustomloss": 3, "28": [3, 10], "current": [3, 8, 9, 10, 11], "support": [3, 6, 9, 10, 11], "oper": 3, "trivial": 3, "strategi": [3, 4], "2016": [3, 10, 11], "sentiment": [3, 6, 10], "19": [3, 10], "onevsal": [3, 11], "know": 3, "where": [3, 5, 8, 9, 10, 11], "top": [3, 8, 11], "thu": [3, 4, 5, 8, 9, 11], "nor": 3, "castano": [3, 10], "2019": [3, 10, 11], "dynam": [3, 9, 10, 11], "task": [3, 4, 10], "45": [3, 5, 10], "15": [3, 8, 10], "polici": [3, 11], "processor": 3, "av": [3, 11], "ptr": [3, 11], "member": [3, 11], "d": [3, 11], "static": [3, 11], "red_siz": [3, 11], "pleas": 3, "check": [3, 4, 8], "offer": [3, 6], "torch": [3, 9, 11], "embed": [3, 9, 11], "lstm": [3, 9, 11], "cnn": [3, 11], "its": [3, 4, 8, 9, 11], "layer": [3, 9, 11], "neuralclassifiertrain": [3, 9, 11], "cnnnet": [3, 9, 11], "vocabulary_s": [3, 9, 10, 11], "cuda": [3, 9, 11], "supervis": [4, 6], "strongli": [4, 5], "good": [4, 5], "choic": [4, 11], "hyper": [4, 8, 9], "wherebi": 4, "chosen": [4, 8], "pick": 4, "best": [4, 8, 9, 11], "being": [4, 8, 11], "criteria": 4, "solv": [4, 11], "assess": 4, "own": 4, "right": [4, 8, 10], "impos": [4, 8], "aim": [4, 5], "appropri": 4, "configur": [4, 8], "design": 4, "long": [4, 9], "regard": 4, "next": [4, 8, 9, 10], "section": 4, "argu": 4, "alejandro": 4, "fabrizio": 4, "count": [4, 5, 6, 8, 10, 11], "arxiv": 4, "preprint": 4, "2011": 4, "02552": 4, "2020": [4, 9], "varieti": 4, "exhibit": [4, 5], "degre": 4, "model_select": [4, 7, 11], "gridsearchq": [4, 8, 11], "grid": [4, 8, 11], "explor": [4, 8], "portion": 4, "param_grid": [4, 8, 11], "logspac": [4, 11], "class_weight": [4, 11], "eval_budget": 4, "refit": [4, 8], "retrain": [4, 9], "goe": 4, "end": [4, 8, 11], "best_params_": 4, "best_model_": 4, "101": 4, "5f": 4, "system": [4, 11], "start": 4, "hyperparam": 4, "0001": [4, 11], "got": [4, 11], "24987": 4, "48135": 4, "001": [4, 9, 11], "24866": 4, "100000": 4, "43676": 4, "finish": 4, "param": [4, 8, 9, 11], "19982": 4, "develop": [4, 6], "1010": 4, "5005": 4, "54it": 4, "20342": 4, "altern": 4, "computation": 4, "costli": 4, "try": 4, "theoret": 4, "suboptim": 4, "opt": 4, "gridsearchcv": [4, 11], "10000": 4, "5379": 4, "55it": 4, "41734": 4, "wors": [4, 5, 8], "larg": 4, "between": [4, 5, 6, 8, 9, 11], "modal": 4, "turn": 4, "better": 4, "nonetheless": 4, "happen": [4, 5], "basic": [5, 11], "help": [5, 11], "analys": [5, 6], "outcom": 5, "main": 5, "method_nam": [5, 8, 11], "name": [5, 8, 9, 10, 11], "shape": [5, 8, 9, 10, 11], "correspond": [5, 10], "matrix": [5, 8, 11], "appear": 5, "occur": [5, 10], "merg": 5, "emq": [5, 11], "55": 5, "showcas": 5, "wide": 5, "variant": [5, 6, 8, 11], "linear": [5, 8, 11], "review": [5, 6, 10], "step": [5, 8], "05": [5, 8, 11], "gen_data": 5, "base_classifi": 5, "yield": [5, 8, 10, 11], "tr_prev": [5, 8, 11], "append": 5, "__class__": 5, "__name__": 5, "insight": 5, "view": 5, "y": [5, 8, 9, 10, 11], "axi": [5, 8], "against": 5, "x": [5, 8, 9, 10, 11], "unfortun": 5, "limit": [5, 8, 11], "binary_diagon": [5, 8], "train_prev": [5, 8], "savepath": [5, 8], "bin_diag": 5, "png": 5, "save": [5, 8], "pdf": [5, 11], "cyan": 5, "dot": [5, 8], "color": [5, 8], "band": [5, 8], "hidden": [5, 9, 11], "show_std": [5, 8], "unadjust": 5, "bias": 5, "toward": [5, 10], "seen": [5, 8, 11], "evinc": 5, "box": [5, 8], "binary_bias_glob": [5, 8], "bin_bia": 5, "unbias": 5, "center": 5, "tend": 5, "overestim": 5, "high": [5, 8], "lower": [5, 11], "again": 5, "accordingli": 5, "20": [5, 8, 11], "90": [5, 8], "rewrit": 5, "method_data": 5, "training_preval": 5, "linspac": 5, "training_s": 5, "suffic": 5, "latex": 5, "syntax": 5, "_": [5, 8, 10], "now": 5, "clearli": 5, "binary_bias_bin": [5, 8], "broken": [5, 8], "down": [5, 8, 10], "bin": [5, 8, 11], "To": [5, 10], "nbin": [5, 8, 11], "isometr": [5, 8], "subinterv": 5, "interestingli": 5, "enough": 5, "seemingli": 5, "tendenc": 5, "low": [5, 8, 9], "underestim": 5, "beyond": 5, "67": [5, 8], "curios": 5, "pretti": 5, "discuss": 5, "analyz": 5, "compar": [5, 8], "both": [5, 10], "irrespect": [5, 11], "harder": 5, "interpret": [5, 6, 11], "error_by_drift": [5, 8], "error_nam": [5, 8], "n_bin": [5, 8, 11], "err_drift": 5, "whenev": [5, 8], "clear": 5, "lowest": 5, "difficult": 5, "rememb": 5, "solid": 5, "comparison": 5, "detriment": 5, "visual": [5, 6], "hide": 5, "framework": [6, 11], "written": 6, "root": 6, "concept": 6, "baselin": 6, "integr": 6, "commonli": 6, "facilit": 6, "twitter": [6, 10], "true_preval": 6, "hold": [6, 8, 11], "endeavour": [6, 8], "popular": 6, "expect": [6, 11], "maxim": [6, 11], "hdy": [6, 11], "versatil": 6, "etc": 6, "uci": [6, 10], "nativ": 6, "loss": [6, 9, 11], "perf": [6, 9, 11], "ad": 6, "meta": [6, 8], "plot": [6, 7], "diagon": [6, 8], "bia": [6, 8, 9, 11], "drift": 6, "api": 6, "subpackag": 7, "submodul": 7, "util": [7, 9, 10], "content": 7, "bctscalibr": 9, "nbvscalibr": 9, "recalibratedprobabilisticclassifi": 9, "recalibratedprobabilisticclassifierbas": 9, "classes_": [9, 10, 11], "fit_cv": 9, "fit_tr_val": 9, "tscalibr": 9, "vscalibr": 9, "lowranklogisticregress": 9, "document_embed": 9, "lstmnet": 9, "reset_net_param": 9, "textclassifiernet": 9, "dimens": [8, 9, 10, 11], "forward": [9, 11], "xavier_uniform": 9, "torchdataset": 9, "asdataload": 9, "decision_funct": 9, "splitstratifi": 10, "stat": 10, "train_test": 10, "xp": 10, "xy": 10, "split_random": 10, "split_stratifi": 10, "uniform_sampl": 10, "uniform_sampling_index": 10, "fetch_lequa2022": 10, "warn": 10, "indextransform": 10, "add_word": 10, "fit_transform": 10, "reader": 8, "binar": [8, 10], "from_csv": 10, "from_spars": 10, "from_text": 10, "reindex_label": 10, "getptecondestim": 11, "solve_adjust": 11, "adjustedclassifyandcount": 11, "distributionmatch": 11, "dy": 11, "em": 11, "max_it": 11, "explicitlossminimis": 11, "max": 11, "ms2": 11, "mediansweep": 11, "mediansweep2": 11, "probabilisticadjustedclassifyandcount": 11, "probabilisticclassifyandcount": 11, "smm": 11, "t50": 11, "thresholdoptim": 11, "cross_generate_predict": 11, "cross_generate_predictions_depr": 11, "binaryquantifi": 11, "onevsallgener": 11, "eacc": 11, "ecc": 11, "eemq": 11, "ehdi": 11, "epacc": 11, "valid_polici": 11, "ensemblefactori": 11, "get_probability_distribut": 11, "quanetmodul": 11, "quanettrain": 11, "clean_checkpoint": 11, "clean_checkpoint_dir": 11, "mae_loss": 11, "non_aggreg": 8, "maximumlikelihoodprevalenceestim": 11, "absolute_error": 8, "hat": 8, "frac": 8, "mathcal": 8, "sum_": 8, "acc_error": 8, "y_true": 8, "y_pred": 8, "tp": 8, "tn": 8, "fp": 8, "fn": 8, "stand": [8, 11], "f1_error": 8, "macro": 8, "f_1": 8, "harmon": 8, "recal": 8, "2tp": 8, "independ": [8, 11], "err_nam": 8, "p_hat": 8, "d_": 8, "kl": 8, "log": [8, 10], "factor": 8, "beforehand": 8, "n_sampl": [8, 9], "mean_absolute_error": 8, "mean_relative_absolute_error": 8, "relative_absolute_error": 8, "underlin": 8, "displaystyl": 8, "abstractprotocol": 8, "union": [8, 10, 11], "aggr_speedup": 8, "auto": 8, "evaluation_report": 8, "app": [8, 11], "repeat": 8, "smooth_limits_epsilon": 8, "random_st": [8, 10], "return_typ": 8, "sample_prev": 8, "abstractstochasticseededprotocol": 8, "onlabelledcollectionprotocol": 8, "95": 8, "copi": [8, 10], "quantiti": 8, "labelled_collect": 8, "prevalence_grid": 8, "exhaust": 8, "sum": [8, 11], "implicit": 8, "return_constrained_dim": 8, "rest": [8, 9, 10, 11], "quit": 8, "obvious": 8, "determinist": 8, "anywher": 8, "multipli": 8, "necessari": 8, "samples_paramet": 8, "total": 8, "parent": 8, "sequenc": 8, "enforc": 8, "collat": 8, "arg": [8, 10], "domainmix": 8, "domaina": 8, "domainb": 8, "mixture_point": 8, "domain": 8, "scale": [8, 9, 11], "npp": 8, "draw": 8, "uniformli": 8, "therefor": 8, "get_col": 8, "get_labelled_collect": 8, "on_preclassified_inst": 8, "pre_classif": 8, "in_plac": 8, "usimplexpp": 8, "kraemer": 8, "algorithm": [8, 11], "sens": 8, "guarante": [8, 10], "prefer": 8, "intract": 8, "hellingerdist": 8, "hellingh": 8, "distanc": [8, 11], "hd": [8, 11], "discret": [8, 11], "sqrt": 8, "p_i": 8, "q_i": 8, "real": [8, 9, 10, 11], "topsoedist": 8, "1e": [8, 9, 11], "topso": [8, 11], "adjusted_quantif": 8, "prevalence_estim": 8, "tpr": [8, 11], "fpr": [8, 11], "clip": 8, "exce": 8, "check_prevalence_vector": 8, "raise_except": 8, "toleranz": 8, "08": 8, "combinations_budget": 8, "largest": 8, "dimension": [8, 9, 10, 11], "repetit": 8, "less": [8, 10], "normalize_preval": 8, "l1": [8, 11], "calcul": 8, "binom": 8, "mass": 8, "alloc": [8, 9], "solut": 8, "star": 8, "bar": 8, "prevalence_from_label": 8, "n_instanc": [8, 9, 11], "correctli": 8, "even": 8, "len": 8, "prevalence_from_prob": 8, "bool": [8, 9, 11], "argmax": 8, "prevalence_linspac": 8, "01": [8, 9, 11], "separ": [8, 10], "99": 8, "uniform_prevalence_sampl": 8, "adapt": [8, 9], "post": 8, "http": [8, 10, 11], "stackexchang": 8, "com": 8, "question": 8, "3227": 8, "uniform": [8, 10], "uniform_simplex_sampl": 8, "dict": [8, 10, 11], "timeout": 8, "dictionari": [8, 9, 10, 11], "kei": [8, 10], "quantification_error": 8, "whether": [8, 9, 10, 11], "ignor": [8, 10, 11], "gen": 8, "establish": 8, "timer": 8, "longer": [8, 11], "timeouterror": 8, "bound": [8, 11], "stdout": 8, "best_model": 8, "after": [8, 11], "minim": [8, 11], "routin": [8, 10, 11], "unus": [8, 9], "contanin": 8, "cross_val_predict": 8, "akin": [8, 11], "issu": 8, "reproduc": [8, 10], "pos_class": [8, 10], "titl": 8, "colormap": 8, "listedcolormap": 8, "vertical_xtick": 8, "legend": 8, "local": 8, "sign": 8, "minu": 8, "classs": 8, "compon": [8, 9, 11], "cm": 8, "tab10": 8, "secondari": 8, "global": 8, "method_ord": 8, "henc": [8, 10], "conveni": 8, "multiclass": [8, 10, 11], "inconveni": 8, "leyend": 8, "hightlight": 8, "associ": 8, "brokenbar_supremacy_by_drift": 8, "isomer": 8, "x_error": 8, "y_error": 8, "ttest_alpha": 8, "005": 8, "tail_density_threshold": 8, "region": 8, "chart": 8, "condit": [8, 11], "ii": 8, "significantli": 8, "side": 8, "confid": 8, "percentil": 8, "divid": 8, "amount": 8, "similar": [8, 11], "threshold": [8, 11], "densiti": 8, "tail": 8, "discard": 8, "outlier": 8, "show_dens": 8, "show_legend": 8, "logscal": 8, "vline": 8, "especi": 8, "mai": 8, "cumberson": 8, "gain": 8, "understand": 8, "fare": 8, "regim": 8, "highlight": 8, "vertic": 8, "earlystop": 8, "patienc": [8, 9, 11], "lower_is_bett": 8, "earli": [8, 9, 11], "stop": [8, 9, 11], "epoch": [8, 9, 11], "best_epoch": 8, "best_scor": 8, "consecut": [8, 9, 11], "monitor": 8, "obtaind": 8, "far": [8, 9, 10], "flag": 8, "keep": 8, "track": 8, "boolean": [8, 10, 11], "create_if_not_exist": 8, "makedir": 8, "exist_ok": 8, "join": 8, "dir": [8, 11], "subdir": 8, "anotherdir": 8, "create_parent_dir": 8, "exist": 8, "txt": 8, "download_fil": 8, "url": 8, "archive_filenam": 8, "destin": 8, "filenam": 8, "download_file_if_not_exist": 8, "dowload": 8, "get_quapy_hom": 8, "home": [8, 10], "perman": 8, "map_parallel": 8, "func": 8, "slice": 8, "item": 8, "wrapper": [8, 9, 10, 11], "multiprocess": [8, 11], "delai": 8, "args_i": 8, "silent": [8, 11], "child": 8, "ensur": 8, "pickled_resourc": 8, "pickle_path": 8, "generation_func": 8, "fast": [8, 10], "resourc": 8, "some_arrai": 8, "mock": [8, 9], "rand": 8, "my_arrai": 8, "pkl": 8, "save_text_fil": 8, "disk": 8, "miss": 8, "temp_se": 8, "context": 8, "tempor": 8, "outer": 8, "state": 8, "within": [8, 11], "get_njob": [], "correct": [9, 11], "temperatur": [9, 11], "bct": [9, 11], "abstent": 9, "alexandari": [9, 11], "afterward": [9, 11], "No": [9, 11], "nbv": [9, 11], "baseestim": [9, 11], "calibratorfactori": 9, "n_compon": 9, "kwarg": [9, 10, 11], "decomposit": 9, "truncatedsvd": 9, "princip": 9, "regress": 9, "n_featur": 9, "length": [9, 10], "eventu": [9, 10], "unalt": 9, "emb": 9, "embedding_s": 9, "hidden_s": 9, "repr_siz": 9, "kernel_height": 9, "stride": 9, "pad": [9, 10], "drop_p": 9, "convolut": 9, "vocabulari": [9, 10], "kernel": 9, "drop": 9, "dropout": [9, 11], "batch": 9, "dataload": 9, "tensor": 9, "n_dimens": 9, "lstm_class_nlay": 9, "short": 9, "memori": 9, "net": 9, "weight_decai": 9, "batch_siz": 9, "64": [9, 11], "batch_size_test": 9, "512": [9, 11], "padding_length": 9, "checkpointpath": 9, "checkpoint": [9, 11], "classifier_net": 9, "weight": [9, 10], "decai": 9, "wait": 9, "enabl": 9, "gpu": [9, 11], "vocab_s": 9, "reiniti": 9, "trainer": 9, "disjoint": 9, "embed_s": 9, "nn": 9, "pad_length": 9, "xavier": 9, "shuffl": [9, 10], "longest": 9, "shorter": 9, "svmperf_bas": [9, 11], "classifiermixin": 9, "thorsten": 9, "refer": [9, 10], "svm_perf_learn": 9, "svm_perf_classifi": 9, "trade": 9, "off": 9, "margin": 9, "std": 9, "qacc": 9, "qf1": 9, "qgm": 9, "12": 9, "26": 9, "23": 9, "train_siz": 10, "conform": 10, "round": 10, "loader_kwarg": 10, "read": 10, "tupl": [10, 11], "tr": 10, "te": 10, "csr": 10, "csr_matrix": 10, "4403": 10, "my_collect": 10, "codefram": 10, "larger": [10, 11], "actual": [10, 11], "empti": 10, "met": 10, "whose": [10, 11], "train_prop": 10, "left": [8, 10], "stratif": 10, "greater": 10, "dataset_nam": 10, "data_hom": 10, "test_split": 10, "predefin": 10, "uci_dataset": 10, "dump": 10, "leav": 10, "quay_data": 10, "ml": 10, "5fcvx2": 10, "x2": 10, "offici": 10, "lequa": 10, "competit": 10, "t1a": 10, "t1b": 10, "t2a": 10, "t2b": 10, "raw": 10, "merchandis": 10, "sperduti": 10, "2022": 10, "overview": 10, "clef": 10, "lequa2022_experi": 10, "py": 10, "guid": 10, "val_gen": 10, "test_gen": 10, "samplesfromdir": 10, "minimun": 10, "kept": 10, "subsequ": 10, "mining6": 10, "devel": 10, "style": 10, "countvector": 10, "keyword": [10, 11], "nogap": 10, "regardless": 10, "codifi": 10, "unknown": 10, "surfac": 10, "assert": 10, "gap": 10, "preced": 10, "decid": 10, "uniqu": 10, "rare": 10, "unk": 10, "minimum": [10, 11], "occurr": 10, "org": [10, 11], "stabl": 10, "feature_extract": 10, "html": 10, "subtyp": 10, "spmatrix": 10, "remov": [10, 11], "infrequ": 10, "aka": [10, 11], "sublinear_tf": 10, "scall": 10, "counter": 10, "tfidfvector": 10, "whcih": 10, "had": 10, "encod": 10, "utf": 10, "csv": 10, "feat1": 10, "feat2": 10, "featn": 10, "covari": 10, "express": 10, "row": 10, "class2int": 10, "collet": 10, "fomart": 10, "progress": 10, "sentenc": 10, "classnam": 10, "u1": 10, "misclassif": 11, "n_classes_": [], "fit_classifi": 11, "bypass": 11, "y_": 11, "ptecondestim": 11, "prevs_estim": 11, "ax": 11, "entri": 11, "y_i": 11, "y_j": 11, "_posterior_probabilities_": 11, "attribut": 11, "subclass": 11, "give": 11, "outsid": 11, "unless": 11, "noth": 11, "els": 11, "cdf": 11, "match": 11, "helling": 11, "sought": 11, "channel": 11, "proper": 11, "ch": 11, "di": 11, "dij": 11, "fraction": 11, "th": 11, "tol": 11, "ternari": 11, "dl": 11, "doi": 11, "1145": 11, "3219819": 11, "3220059": 11, "histogram": 11, "toler": 11, "explicit": 11, "exact_train_prev": 11, "recalib": 11, "updat": 11, "likelihood": [9, 11], "mutual": 11, "recurs": 11, "until": 11, "converg": 11, "suggest": 11, "recalibr": 11, "reach": 11, "loop": 11, "cumul": 11, "unlabel": 11, "latter": 11, "forman": 11, "2006": 11, "2008": 11, "goal": 11, "bring": 11, "denomin": 11, "median": 11, "sweep": 11, "binary_quantifi": 11, "prevel": 11, "emploi": 11, "resp": 11, "subobject": 11, "nest": 11, "pipelin": 11, "__": 11, "simplif": 11, "2021": 11, "equival": 11, "cosest": 11, "heurist": 11, "choos": 11, "ground": 11, "complement": 11, "param_mod_sel": 11, "param_model_sel": 11, "min_po": 11, "max_sample_s": 11, "closest": 11, "preliminari": 11, "recomput": 11, "compat": 11, "l": 11, "base_quantifier_class": 11, "factori": 11, "common": 11, "doc_embedding_s": 11, "stats_siz": 11, "lstm_hidden_s": 11, "lstm_nlayer": 11, "ff_layer": 11, "1024": 11, "bidirect": 11, "qdrop_p": 11, "order_bi": 11, "cell": 11, "connect": 11, "ff": 11, "sort": 11, "doc_embed": 11, "doc_posterior": 11, "recip": 11, "care": 11, "regist": 11, "hook": 11, "n_epoch": 11, "tr_iter_per_poch": 11, "va_iter_per_poch": 11, "checkpointdir": 11, "checkpointnam": 11, "phase": 11, "anyth": 11, "truth": 11, "mlpe": 11, "lazi": 11, "put": 11, "assumpion": 11, "beat": [9, 11], "estimant": 11, "kundaj": 9, "shrikumar": 9, "novemb": 9, "232": 9, "pmlr": 9, "outpu": [], "partit": 9, "ight": [], "valueerror": 8, "attach": 10, "mix": 10, "onevsallaggreg": 11, "parallel_backend": 11, "loki": 11, "backend": 11, "cannot": 11, "temp": 11, "getonevsal": 11}, "objects": {"": [[8, 0, 0, "-", "quapy"]], "quapy": [[9, 0, 0, "-", "classification"], [10, 0, 0, "-", "data"], [8, 0, 0, "-", "error"], [8, 0, 0, "-", "evaluation"], [8, 0, 0, "-", "functional"], [11, 0, 0, "-", "method"], [8, 0, 0, "-", "model_selection"], [8, 0, 0, "-", "plot"], [8, 0, 0, "-", "protocol"], [8, 0, 0, "-", "util"]], "quapy.classification": [[9, 0, 0, "-", "calibration"], [9, 0, 0, "-", "methods"], [9, 0, 0, "-", "neural"], [9, 0, 0, "-", "svmperf"]], "quapy.classification.calibration": [[9, 1, 1, "", "BCTSCalibration"], [9, 1, 1, "", "NBVSCalibration"], [9, 1, 1, "", "RecalibratedProbabilisticClassifier"], [9, 1, 1, "", "RecalibratedProbabilisticClassifierBase"], [9, 1, 1, "", "TSCalibration"], [9, 1, 1, "", "VSCalibration"]], "quapy.classification.calibration.RecalibratedProbabilisticClassifierBase": [[9, 2, 1, "", "classes_"], [9, 3, 1, "", "fit"], [9, 3, 1, "", "fit_cv"], [9, 3, 1, "", "fit_tr_val"], [9, 3, 1, "", "predict"], [9, 3, 1, "", "predict_proba"]], "quapy.classification.methods": [[9, 1, 1, "", "LowRankLogisticRegression"]], "quapy.classification.methods.LowRankLogisticRegression": [[9, 3, 1, "", "fit"], [9, 3, 1, "", "get_params"], [9, 3, 1, "", "predict"], [9, 3, 1, "", "predict_proba"], [9, 3, 1, "", "set_params"], [9, 3, 1, "", "transform"]], "quapy.classification.neural": [[9, 1, 1, "", "CNNnet"], [9, 1, 1, "", "LSTMnet"], [9, 1, 1, "", "NeuralClassifierTrainer"], [9, 1, 1, "", "TextClassifierNet"], [9, 1, 1, "", "TorchDataset"]], "quapy.classification.neural.CNNnet": [[9, 3, 1, "", "document_embedding"], [9, 3, 1, "", "get_params"], [9, 4, 1, "", "training"], [9, 2, 1, "", "vocabulary_size"]], "quapy.classification.neural.LSTMnet": [[9, 3, 1, "", "document_embedding"], [9, 3, 1, "", "get_params"], [9, 4, 1, "", "training"], [9, 2, 1, "", "vocabulary_size"]], "quapy.classification.neural.NeuralClassifierTrainer": [[9, 2, 1, "", "device"], [9, 3, 1, "", "fit"], [9, 3, 1, "", "get_params"], [9, 3, 1, "", "predict"], [9, 3, 1, "", "predict_proba"], [9, 3, 1, "", "reset_net_params"], [9, 3, 1, "", "set_params"], [9, 3, 1, "", "transform"]], "quapy.classification.neural.TextClassifierNet": [[9, 3, 1, "", "dimensions"], [9, 3, 1, "", "document_embedding"], [9, 3, 1, "", "forward"], [9, 3, 1, "", "get_params"], [9, 3, 1, "", "predict_proba"], [9, 4, 1, "", "training"], [9, 2, 1, "", "vocabulary_size"], [9, 3, 1, "", "xavier_uniform"]], "quapy.classification.neural.TorchDataset": [[9, 3, 1, "", "asDataloader"]], "quapy.classification.svmperf": [[9, 1, 1, "", "SVMperf"]], "quapy.classification.svmperf.SVMperf": [[9, 3, 1, "", "decision_function"], [9, 3, 1, "", "fit"], [9, 3, 1, "", "predict"], [9, 3, 1, "", "set_params"], [9, 4, 1, "", "valid_losses"]], "quapy.data": [[10, 0, 0, "-", "base"], [10, 0, 0, "-", "datasets"], [10, 0, 0, "-", "preprocessing"], [10, 0, 0, "-", "reader"]], "quapy.data.base": [[10, 1, 1, "", "Dataset"], [10, 1, 1, "", "LabelledCollection"]], "quapy.data.base.Dataset": [[10, 3, 1, "", "SplitStratified"], [10, 2, 1, "", "binary"], [10, 2, 1, "", "classes_"], [10, 3, 1, "", "kFCV"], [10, 3, 1, "", "load"], [10, 2, 1, "", "n_classes"], [10, 3, 1, "", "stats"], [10, 2, 1, "", "train_test"], [10, 2, 1, "", "vocabulary_size"]], "quapy.data.base.LabelledCollection": [[10, 2, 1, "", "X"], [10, 2, 1, "", "Xp"], [10, 2, 1, "", "Xy"], [10, 2, 1, "", "binary"], [10, 3, 1, "", "counts"], [10, 3, 1, "", "kFCV"], [10, 3, 1, "", "load"], [10, 3, 1, "", "mix"], [10, 2, 1, "", "n_classes"], [10, 2, 1, "", "p"], [10, 3, 1, "", "prevalence"], [10, 3, 1, "", "sampling"], [10, 3, 1, "", "sampling_from_index"], [10, 3, 1, "", "sampling_index"], [10, 3, 1, "", "split_random"], [10, 3, 1, "", "split_stratified"], [10, 3, 1, "", "stats"], [10, 3, 1, "", "uniform_sampling"], [10, 3, 1, "", "uniform_sampling_index"], [10, 2, 1, "", "y"]], "quapy.data.datasets": [[10, 5, 1, "", "fetch_UCIDataset"], [10, 5, 1, "", "fetch_UCILabelledCollection"], [10, 5, 1, "", "fetch_lequa2022"], [10, 5, 1, "", "fetch_reviews"], [10, 5, 1, "", "fetch_twitter"], [10, 5, 1, "", "warn"]], "quapy.data.preprocessing": [[10, 1, 1, "", "IndexTransformer"], [10, 5, 1, "", "index"], [10, 5, 1, "", "reduce_columns"], [10, 5, 1, "", "standardize"], [10, 5, 1, "", "text2tfidf"]], "quapy.data.preprocessing.IndexTransformer": [[10, 3, 1, "", "add_word"], [10, 3, 1, "", "fit"], [10, 3, 1, "", "fit_transform"], [10, 3, 1, "", "transform"], [10, 3, 1, "", "vocabulary_size"]], "quapy.data.reader": [[10, 5, 1, "", "binarize"], [10, 5, 1, "", "from_csv"], [10, 5, 1, "", "from_sparse"], [10, 5, 1, "", "from_text"], [10, 5, 1, "", "reindex_labels"]], "quapy.error": [[8, 5, 1, "", "absolute_error"], [8, 5, 1, "", "acc_error"], [8, 5, 1, "", "acce"], [8, 5, 1, "", "ae"], [8, 5, 1, "", "f1_error"], [8, 5, 1, "", "f1e"], [8, 5, 1, "", "from_name"], [8, 5, 1, "", "kld"], [8, 5, 1, "", "mae"], [8, 5, 1, "", "mean_absolute_error"], [8, 5, 1, "", "mean_relative_absolute_error"], [8, 5, 1, "", "mkld"], [8, 5, 1, "", "mnkld"], [8, 5, 1, "", "mrae"], [8, 5, 1, "", "mse"], [8, 5, 1, "", "nkld"], [8, 5, 1, "", "rae"], [8, 5, 1, "", "relative_absolute_error"], [8, 5, 1, "", "se"], [8, 5, 1, "", "smooth"]], "quapy.evaluation": [[8, 5, 1, "", "evaluate"], [8, 5, 1, "", "evaluation_report"], [8, 5, 1, "", "prediction"]], "quapy.functional": [[8, 5, 1, "", "HellingerDistance"], [8, 5, 1, "", "TopsoeDistance"], [8, 5, 1, "", "adjusted_quantification"], [8, 5, 1, "", "check_prevalence_vector"], [8, 5, 1, "", "get_nprevpoints_approximation"], [8, 5, 1, "", "normalize_prevalence"], [8, 5, 1, "", "num_prevalence_combinations"], [8, 5, 1, "", "prevalence_from_labels"], [8, 5, 1, "", "prevalence_from_probabilities"], [8, 5, 1, "", "prevalence_linspace"], [8, 5, 1, "", "strprev"], [8, 5, 1, "", "uniform_prevalence_sampling"], [8, 5, 1, "", "uniform_simplex_sampling"]], "quapy.method": [[11, 0, 0, "-", "aggregative"], [11, 0, 0, "-", "base"], [11, 0, 0, "-", "meta"], [11, 0, 0, "-", "neural"], [11, 0, 0, "-", "non_aggregative"]], "quapy.method.aggregative": [[11, 1, 1, "", "ACC"], [11, 4, 1, "", "AdjustedClassifyAndCount"], [11, 1, 1, "", "AggregativeProbabilisticQuantifier"], [11, 1, 1, "", "AggregativeQuantifier"], [11, 1, 1, "", "CC"], [11, 4, 1, "", "ClassifyAndCount"], [11, 1, 1, "", "DistributionMatching"], [11, 1, 1, "", "DyS"], [11, 1, 1, "", "ELM"], [11, 1, 1, "", "EMQ"], [11, 4, 1, "", "ExpectationMaximizationQuantifier"], [11, 4, 1, "", "ExplicitLossMinimisation"], [11, 1, 1, "", "HDy"], [11, 4, 1, "", "HellingerDistanceY"], [11, 1, 1, "", "MAX"], [11, 1, 1, "", "MS"], [11, 1, 1, "", "MS2"], [11, 4, 1, "", "MedianSweep"], [11, 4, 1, "", "MedianSweep2"], [11, 1, 1, "", "OneVsAllAggregative"], [11, 1, 1, "", "PACC"], [11, 1, 1, "", "PCC"], [11, 4, 1, "", "ProbabilisticAdjustedClassifyAndCount"], [11, 4, 1, "", "ProbabilisticClassifyAndCount"], [11, 4, 1, "", "SLD"], [11, 1, 1, "", "SMM"], [11, 1, 1, "", "SVMAE"], [11, 1, 1, "", "SVMKLD"], [11, 1, 1, "", "SVMNKLD"], [11, 1, 1, "", "SVMQ"], [11, 1, 1, "", "SVMRAE"], [11, 1, 1, "", "T50"], [11, 1, 1, "", "ThresholdOptimization"], [11, 1, 1, "", "X"], [11, 5, 1, "", "cross_generate_predictions"], [11, 5, 1, "", "cross_generate_predictions_depr"]], "quapy.method.aggregative.ACC": [[11, 3, 1, "", "aggregate"], [11, 3, 1, "", "classify"], [11, 3, 1, "", "fit"], [11, 3, 1, "", "getPteCondEstim"], [11, 3, 1, "", "solve_adjustment"]], "quapy.method.aggregative.AggregativeProbabilisticQuantifier": [[11, 3, 1, "", "classify"]], "quapy.method.aggregative.AggregativeQuantifier": [[11, 3, 1, "", "aggregate"], [11, 2, 1, "", "classes_"], [11, 2, 1, "", "classifier"], [11, 3, 1, "", "classify"], [11, 3, 1, "", "fit"], [11, 3, 1, "", "quantify"]], "quapy.method.aggregative.CC": [[11, 3, 1, "", "aggregate"], [11, 3, 1, "", "fit"]], "quapy.method.aggregative.DistributionMatching": [[11, 3, 1, "", "aggregate"], [11, 3, 1, "", "fit"]], "quapy.method.aggregative.DyS": [[11, 3, 1, "", "aggregate"], [11, 3, 1, "", "fit"]], "quapy.method.aggregative.ELM": [[11, 3, 1, "", "aggregate"], [11, 3, 1, "", "classify"], [11, 3, 1, "", "fit"]], "quapy.method.aggregative.EMQ": [[11, 3, 1, "", "EM"], [11, 4, 1, "", "EPSILON"], [11, 4, 1, "", "MAX_ITER"], [11, 3, 1, "", "aggregate"], [11, 3, 1, "", "fit"], [11, 3, 1, "", "predict_proba"]], "quapy.method.aggregative.HDy": [[11, 3, 1, "", "aggregate"], [11, 3, 1, "", "fit"]], "quapy.method.aggregative.OneVsAllAggregative": [[11, 3, 1, "", "aggregate"], [11, 3, 1, "", "classify"]], "quapy.method.aggregative.PACC": [[11, 3, 1, "", "aggregate"], [11, 3, 1, "", "classify"], [11, 3, 1, "", "fit"], [11, 3, 1, "", "getPteCondEstim"]], "quapy.method.aggregative.PCC": [[11, 3, 1, "", "aggregate"], [11, 3, 1, "", "fit"]], "quapy.method.aggregative.SMM": [[11, 3, 1, "", "aggregate"], [11, 3, 1, "", "fit"]], "quapy.method.aggregative.ThresholdOptimization": [[11, 3, 1, "", "aggregate"], [11, 3, 1, "", "fit"]], "quapy.method.base": [[11, 1, 1, "", "BaseQuantifier"], [11, 1, 1, "", "BinaryQuantifier"], [11, 1, 1, "", "OneVsAll"], [11, 1, 1, "", "OneVsAllGeneric"], [11, 5, 1, "", "getOneVsAll"]], "quapy.method.base.BaseQuantifier": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "quantify"]], "quapy.method.base.OneVsAllGeneric": [[11, 2, 1, "", "classes_"], [11, 3, 1, "", "fit"], [11, 3, 1, "", "quantify"]], "quapy.method.meta": [[11, 5, 1, "", "EACC"], [11, 5, 1, "", "ECC"], [11, 5, 1, "", "EEMQ"], [11, 5, 1, "", "EHDy"], [11, 5, 1, "", "EPACC"], [11, 1, 1, "", "Ensemble"], [11, 5, 1, "", "ensembleFactory"], [11, 5, 1, "", "get_probability_distribution"]], "quapy.method.meta.Ensemble": [[11, 4, 1, "", "VALID_POLICIES"], [11, 2, 1, "", "aggregative"], [11, 3, 1, "", "fit"], [11, 3, 1, "", "get_params"], [11, 2, 1, "", "probabilistic"], [11, 3, 1, "", "quantify"], [11, 3, 1, "", "set_params"]], "quapy.method.neural": [[11, 1, 1, "", "QuaNetModule"], [11, 1, 1, "", "QuaNetTrainer"], [11, 5, 1, "", "mae_loss"]], "quapy.method.neural.QuaNetModule": [[11, 2, 1, "", "device"], [11, 3, 1, "", "forward"], [11, 4, 1, "", "training"]], "quapy.method.neural.QuaNetTrainer": [[11, 2, 1, "", "classes_"], [11, 3, 1, "", "clean_checkpoint"], [11, 3, 1, "", "clean_checkpoint_dir"], [11, 3, 1, "", "fit"], [11, 3, 1, "", "get_params"], [11, 3, 1, "", "quantify"], [11, 3, 1, "", "set_params"]], "quapy.method.non_aggregative": [[11, 1, 1, "", "MaximumLikelihoodPrevalenceEstimation"]], "quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "quantify"]], "quapy.model_selection": [[8, 1, 1, "", "GridSearchQ"], [8, 5, 1, "", "cross_val_predict"]], "quapy.model_selection.GridSearchQ": [[8, 3, 1, "", "best_model"], [8, 3, 1, "", "fit"], [8, 3, 1, "", "get_params"], [8, 3, 1, "", "quantify"], [8, 3, 1, "", "set_params"]], "quapy.plot": [[8, 5, 1, "", "binary_bias_bins"], [8, 5, 1, "", "binary_bias_global"], [8, 5, 1, "", "binary_diagonal"], [8, 5, 1, "", "brokenbar_supremacy_by_drift"], [8, 5, 1, "", "error_by_drift"]], "quapy.protocol": [[8, 1, 1, "", "APP"], [8, 1, 1, "", "AbstractProtocol"], [8, 1, 1, "", "AbstractStochasticSeededProtocol"], [8, 1, 1, "", "DomainMixer"], [8, 1, 1, "", "NPP"], [8, 1, 1, "", "OnLabelledCollectionProtocol"], [8, 1, 1, "", "USimplexPP"]], "quapy.protocol.APP": [[8, 3, 1, "", "prevalence_grid"], [8, 3, 1, "", "sample"], [8, 3, 1, "", "samples_parameters"], [8, 3, 1, "", "total"]], "quapy.protocol.AbstractProtocol": [[8, 3, 1, "", "total"]], "quapy.protocol.AbstractStochasticSeededProtocol": [[8, 3, 1, "", "collator"], [8, 2, 1, "", "random_state"], [8, 3, 1, "", "sample"], [8, 3, 1, "", "samples_parameters"]], "quapy.protocol.DomainMixer": [[8, 3, 1, "", "sample"], [8, 3, 1, "", "samples_parameters"], [8, 3, 1, "", "total"]], "quapy.protocol.NPP": [[8, 3, 1, "", "sample"], [8, 3, 1, "", "samples_parameters"], [8, 3, 1, "", "total"]], "quapy.protocol.OnLabelledCollectionProtocol": [[8, 4, 1, "", "RETURN_TYPES"], [8, 3, 1, "", "get_collator"], [8, 3, 1, "", "get_labelled_collection"], [8, 3, 1, "", "on_preclassified_instances"]], "quapy.protocol.USimplexPP": [[8, 3, 1, "", "sample"], [8, 3, 1, "", "samples_parameters"], [8, 3, 1, "", "total"]], "quapy.util": [[8, 1, 1, "", "EarlyStop"], [8, 5, 1, "", "create_if_not_exist"], [8, 5, 1, "", "create_parent_dir"], [8, 5, 1, "", "download_file"], [8, 5, 1, "", "download_file_if_not_exists"], [8, 5, 1, "", "get_quapy_home"], [8, 5, 1, "", "map_parallel"], [8, 5, 1, "", "parallel"], [8, 5, 1, "", "pickled_resource"], [8, 5, 1, "", "save_text_file"], [8, 5, 1, "", "temp_seed"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:property", "3": "py:method", "4": "py:attribute", "5": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "property", "Python property"], "3": ["py", "method", "Python method"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "function", "Python function"]}, "titleterms": {"dataset": [0, 10], "review": 0, "twitter": 0, "sentiment": 0, "uci": 0, "machin": 0, "learn": 0, "issu": 0, "ad": 0, "custom": 0, "data": [0, 10], "process": 0, "evalu": [1, 8], "error": [1, 5, 8], "measur": 1, "protocol": [1, 8], "instal": 2, "requir": 2, "svm": 2, "perf": 2, "quantif": [2, 3, 4, 5], "orient": [2, 4], "loss": [2, 3, 4], "method": [3, 9, 11], "aggreg": [3, 11], "The": 3, "classifi": 3, "count": 3, "variant": 3, "expect": 3, "maxim": 3, "emq": 3, "helling": 3, "distanc": 3, "y": 3, "hdy": 3, "explicit": 3, "minim": 3, "meta": [3, 11], "model": [3, 4], "ensembl": 3, "quanet": 3, "neural": [3, 9, 11], "network": 3, "select": 4, "target": 4, "classif": [4, 9], "plot": [5, 8], "diagon": 5, "bia": 5, "drift": 5, "welcom": 6, "quapi": [6, 7, 8, 9, 10, 11], "": 6, "document": 6, "introduct": 6, "A": 6, "quick": 6, "exampl": 6, "featur": 6, "content": [6, 8, 9, 10, 11], "indic": 6, "tabl": 6, "packag": [8, 9, 10, 11], "subpackag": 8, "submodul": [8, 9, 10, 11], "function": 8, "model_select": 8, "util": 8, "modul": [8, 9, 10, 11], "calibr": 9, "svmperf": 9, "base": [10, 11], "preprocess": 10, "reader": 10, "non_aggreg": 11}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx": 57}, "alltitles": {"Datasets": [[0, "datasets"]], "Reviews Datasets": [[0, "reviews-datasets"]], "Twitter Sentiment Datasets": [[0, "twitter-sentiment-datasets"]], "UCI Machine Learning": [[0, "uci-machine-learning"]], "Issues:": [[0, "issues"]], "Adding Custom Datasets": [[0, "adding-custom-datasets"]], "Data Processing": [[0, "data-processing"]], "Evaluation": [[1, "evaluation"]], "Error Measures": [[1, "error-measures"]], "Evaluation Protocols": [[1, "evaluation-protocols"]], "Installation": [[2, "installation"]], "Requirements": [[2, "requirements"]], "SVM-perf with quantification-oriented losses": [[2, "svm-perf-with-quantification-oriented-losses"]], "Quantification Methods": [[3, "quantification-methods"]], "Aggregative Methods": [[3, "aggregative-methods"]], "The Classify & Count variants": [[3, "the-classify-count-variants"]], "Expectation Maximization (EMQ)": [[3, "expectation-maximization-emq"]], "Hellinger Distance y (HDy)": [[3, "hellinger-distance-y-hdy"]], "Explicit Loss Minimization": [[3, "explicit-loss-minimization"]], "Meta Models": [[3, "meta-models"]], "Ensembles": [[3, "ensembles"]], "The QuaNet neural network": [[3, "the-quanet-neural-network"]], "Model Selection": [[4, "model-selection"]], "Targeting a Quantification-oriented loss": [[4, "targeting-a-quantification-oriented-loss"]], "Targeting a Classification-oriented loss": [[4, "targeting-a-classification-oriented-loss"]], "Plotting": [[5, "plotting"]], "Diagonal Plot": [[5, "diagonal-plot"]], "Quantification bias": [[5, "quantification-bias"]], "Error by Drift": [[5, "error-by-drift"]], "Welcome to QuaPy\u2019s documentation!": [[6, "welcome-to-quapy-s-documentation"]], "Introduction": [[6, "introduction"]], "A quick example:": [[6, "a-quick-example"]], "Features": [[6, "features"]], "Contents:": [[6, null]], "Indices and tables": [[6, "indices-and-tables"]], "quapy": [[7, "quapy"]], "quapy package": [[8, "quapy-package"]], "Submodules": [[8, "submodules"], [9, "submodules"], [10, "submodules"], [11, "submodules"]], "quapy.error": [[8, "module-quapy.error"]], "quapy.evaluation": [[8, "module-quapy.evaluation"]], "quapy.protocol": [[8, "quapy-protocol"]], "quapy.functional": [[8, "module-quapy.functional"]], "quapy.model_selection": [[8, "module-quapy.model_selection"]], "quapy.plot": [[8, "module-quapy.plot"]], "quapy.util": [[8, "module-quapy.util"]], "Subpackages": [[8, "subpackages"]], "Module contents": [[8, "module-quapy"], [9, "module-quapy.classification"], [10, "module-quapy.data"], [11, "module-quapy.method"]], "quapy.classification package": [[9, "quapy-classification-package"]], "quapy.classification.calibration": [[9, "quapy-classification-calibration"]], "quapy.classification.methods": [[9, "module-quapy.classification.methods"]], "quapy.classification.neural": [[9, "module-quapy.classification.neural"]], "quapy.classification.svmperf": [[9, "module-quapy.classification.svmperf"]], "quapy.data package": [[10, "quapy-data-package"]], "quapy.data.base": [[10, "module-quapy.data.base"]], "quapy.data.datasets": [[10, "module-quapy.data.datasets"]], "quapy.data.preprocessing": [[10, "module-quapy.data.preprocessing"]], "quapy.data.reader": [[10, "module-quapy.data.reader"]], "quapy.method package": [[11, "quapy-method-package"]], "quapy.method.aggregative": [[11, "module-quapy.method.aggregative"]], "quapy.method.base": [[11, "module-quapy.method.base"]], "quapy.method.meta": [[11, "module-quapy.method.meta"]], "quapy.method.neural": [[11, "module-quapy.method.neural"]], "quapy.method.non_aggregative": [[11, "module-quapy.method.non_aggregative"]]}, "indexentries": {"app (class in quapy.protocol)": [[8, "quapy.protocol.APP"]], "abstractprotocol (class in quapy.protocol)": [[8, "quapy.protocol.AbstractProtocol"]], "abstractstochasticseededprotocol (class in quapy.protocol)": [[8, "quapy.protocol.AbstractStochasticSeededProtocol"]], "domainmixer (class in quapy.protocol)": [[8, "quapy.protocol.DomainMixer"]], "earlystop (class in quapy.util)": [[8, "quapy.util.EarlyStop"]], "gridsearchq (class in quapy.model_selection)": [[8, "quapy.model_selection.GridSearchQ"]], "hellingerdistance() (in module quapy.functional)": [[8, "quapy.functional.HellingerDistance"]], "npp (class in quapy.protocol)": [[8, "quapy.protocol.NPP"]], "onlabelledcollectionprotocol (class in quapy.protocol)": [[8, "quapy.protocol.OnLabelledCollectionProtocol"]], "return_types (quapy.protocol.onlabelledcollectionprotocol attribute)": [[8, "quapy.protocol.OnLabelledCollectionProtocol.RETURN_TYPES"]], "topsoedistance() (in module quapy.functional)": [[8, "quapy.functional.TopsoeDistance"]], "usimplexpp (class in quapy.protocol)": [[8, "quapy.protocol.USimplexPP"]], "absolute_error() (in module quapy.error)": [[8, "quapy.error.absolute_error"]], "acc_error() (in module quapy.error)": [[8, "quapy.error.acc_error"]], "acce() (in module quapy.error)": [[8, "quapy.error.acce"]], "adjusted_quantification() (in module quapy.functional)": [[8, "quapy.functional.adjusted_quantification"]], "ae() (in module quapy.error)": [[8, "quapy.error.ae"]], "best_model() (quapy.model_selection.gridsearchq method)": [[8, "quapy.model_selection.GridSearchQ.best_model"]], "binary_bias_bins() (in module quapy.plot)": [[8, "quapy.plot.binary_bias_bins"]], "binary_bias_global() (in module quapy.plot)": [[8, "quapy.plot.binary_bias_global"]], "binary_diagonal() (in module quapy.plot)": [[8, "quapy.plot.binary_diagonal"]], "brokenbar_supremacy_by_drift() (in module quapy.plot)": [[8, "quapy.plot.brokenbar_supremacy_by_drift"]], "check_prevalence_vector() (in module quapy.functional)": [[8, "quapy.functional.check_prevalence_vector"]], "collator() (quapy.protocol.abstractstochasticseededprotocol method)": [[8, "quapy.protocol.AbstractStochasticSeededProtocol.collator"]], "create_if_not_exist() (in module quapy.util)": [[8, "quapy.util.create_if_not_exist"]], "create_parent_dir() (in module quapy.util)": [[8, "quapy.util.create_parent_dir"]], "cross_val_predict() (in module quapy.model_selection)": [[8, "quapy.model_selection.cross_val_predict"]], "download_file() (in module quapy.util)": [[8, "quapy.util.download_file"]], "download_file_if_not_exists() (in module quapy.util)": [[8, "quapy.util.download_file_if_not_exists"]], "error_by_drift() (in module quapy.plot)": [[8, "quapy.plot.error_by_drift"]], "evaluate() (in module quapy.evaluation)": [[8, "quapy.evaluation.evaluate"]], "evaluation_report() (in module quapy.evaluation)": [[8, "quapy.evaluation.evaluation_report"]], "f1_error() (in module quapy.error)": [[8, "quapy.error.f1_error"]], "f1e() (in module quapy.error)": [[8, "quapy.error.f1e"]], "fit() (quapy.model_selection.gridsearchq method)": [[8, "quapy.model_selection.GridSearchQ.fit"]], "from_name() (in module quapy.error)": [[8, "quapy.error.from_name"]], "get_collator() (quapy.protocol.onlabelledcollectionprotocol class method)": [[8, "quapy.protocol.OnLabelledCollectionProtocol.get_collator"]], "get_labelled_collection() (quapy.protocol.onlabelledcollectionprotocol method)": [[8, "quapy.protocol.OnLabelledCollectionProtocol.get_labelled_collection"]], "get_nprevpoints_approximation() (in module quapy.functional)": [[8, "quapy.functional.get_nprevpoints_approximation"]], "get_params() (quapy.model_selection.gridsearchq method)": [[8, "quapy.model_selection.GridSearchQ.get_params"]], "get_quapy_home() (in module quapy.util)": [[8, "quapy.util.get_quapy_home"]], "kld() (in module quapy.error)": [[8, "quapy.error.kld"]], "mae() (in module quapy.error)": [[8, "quapy.error.mae"]], "map_parallel() (in module quapy.util)": [[8, "quapy.util.map_parallel"]], "mean_absolute_error() (in module quapy.error)": [[8, "quapy.error.mean_absolute_error"]], "mean_relative_absolute_error() (in module quapy.error)": [[8, "quapy.error.mean_relative_absolute_error"]], "mkld() (in module quapy.error)": [[8, "quapy.error.mkld"]], "mnkld() (in module quapy.error)": [[8, "quapy.error.mnkld"]], "module": [[8, "module-quapy"], [8, "module-quapy.error"], [8, "module-quapy.evaluation"], [8, "module-quapy.functional"], [8, "module-quapy.model_selection"], [8, "module-quapy.plot"], [8, "module-quapy.protocol"], [8, "module-quapy.util"], [9, "module-quapy.classification"], [9, "module-quapy.classification.calibration"], [9, "module-quapy.classification.methods"], [9, "module-quapy.classification.neural"], [9, "module-quapy.classification.svmperf"], [10, "module-quapy.data"], [10, "module-quapy.data.base"], [10, "module-quapy.data.datasets"], [10, "module-quapy.data.preprocessing"], [10, "module-quapy.data.reader"], [11, "module-quapy.method"], [11, "module-quapy.method.aggregative"], [11, "module-quapy.method.base"], [11, "module-quapy.method.meta"], [11, "module-quapy.method.neural"], [11, "module-quapy.method.non_aggregative"]], "mrae() (in module quapy.error)": [[8, "quapy.error.mrae"]], "mse() (in module quapy.error)": [[8, "quapy.error.mse"]], "nkld() (in module quapy.error)": [[8, "quapy.error.nkld"]], "normalize_prevalence() (in module quapy.functional)": [[8, "quapy.functional.normalize_prevalence"]], "num_prevalence_combinations() (in module quapy.functional)": [[8, "quapy.functional.num_prevalence_combinations"]], "on_preclassified_instances() (quapy.protocol.onlabelledcollectionprotocol method)": [[8, "quapy.protocol.OnLabelledCollectionProtocol.on_preclassified_instances"]], "parallel() (in module quapy.util)": [[8, "quapy.util.parallel"]], "pickled_resource() (in module quapy.util)": [[8, "quapy.util.pickled_resource"]], "prediction() (in module quapy.evaluation)": [[8, "quapy.evaluation.prediction"]], "prevalence_from_labels() (in module quapy.functional)": [[8, "quapy.functional.prevalence_from_labels"]], "prevalence_from_probabilities() (in module quapy.functional)": [[8, "quapy.functional.prevalence_from_probabilities"]], "prevalence_grid() (quapy.protocol.app method)": [[8, "quapy.protocol.APP.prevalence_grid"]], "prevalence_linspace() (in module quapy.functional)": [[8, "quapy.functional.prevalence_linspace"]], "quantify() (quapy.model_selection.gridsearchq method)": [[8, "quapy.model_selection.GridSearchQ.quantify"]], "quapy": [[8, "module-quapy"]], "quapy.error": [[8, "module-quapy.error"]], "quapy.evaluation": [[8, "module-quapy.evaluation"]], "quapy.functional": [[8, "module-quapy.functional"]], "quapy.model_selection": [[8, "module-quapy.model_selection"]], "quapy.plot": [[8, "module-quapy.plot"]], "quapy.protocol": [[8, "module-quapy.protocol"]], "quapy.util": [[8, "module-quapy.util"]], "rae() (in module quapy.error)": [[8, "quapy.error.rae"]], "random_state (quapy.protocol.abstractstochasticseededprotocol property)": [[8, "quapy.protocol.AbstractStochasticSeededProtocol.random_state"]], "relative_absolute_error() (in module quapy.error)": [[8, "quapy.error.relative_absolute_error"]], "sample() (quapy.protocol.app method)": [[8, "quapy.protocol.APP.sample"]], "sample() (quapy.protocol.abstractstochasticseededprotocol method)": [[8, "quapy.protocol.AbstractStochasticSeededProtocol.sample"]], "sample() (quapy.protocol.domainmixer method)": [[8, "quapy.protocol.DomainMixer.sample"]], "sample() (quapy.protocol.npp method)": [[8, "quapy.protocol.NPP.sample"]], "sample() (quapy.protocol.usimplexpp method)": [[8, "quapy.protocol.USimplexPP.sample"]], "samples_parameters() (quapy.protocol.app method)": [[8, "quapy.protocol.APP.samples_parameters"]], "samples_parameters() (quapy.protocol.abstractstochasticseededprotocol method)": [[8, "quapy.protocol.AbstractStochasticSeededProtocol.samples_parameters"]], "samples_parameters() (quapy.protocol.domainmixer method)": [[8, "quapy.protocol.DomainMixer.samples_parameters"]], "samples_parameters() (quapy.protocol.npp method)": [[8, "quapy.protocol.NPP.samples_parameters"]], "samples_parameters() (quapy.protocol.usimplexpp method)": [[8, "quapy.protocol.USimplexPP.samples_parameters"]], "save_text_file() (in module quapy.util)": [[8, "quapy.util.save_text_file"]], "se() (in module quapy.error)": [[8, "quapy.error.se"]], "set_params() (quapy.model_selection.gridsearchq method)": [[8, "quapy.model_selection.GridSearchQ.set_params"]], "smooth() (in module quapy.error)": [[8, "quapy.error.smooth"]], "strprev() (in module quapy.functional)": [[8, "quapy.functional.strprev"]], "temp_seed() (in module quapy.util)": [[8, "quapy.util.temp_seed"]], "total() (quapy.protocol.app method)": [[8, "quapy.protocol.APP.total"]], "total() (quapy.protocol.abstractprotocol method)": [[8, "quapy.protocol.AbstractProtocol.total"]], "total() (quapy.protocol.domainmixer method)": [[8, "quapy.protocol.DomainMixer.total"]], "total() (quapy.protocol.npp method)": [[8, "quapy.protocol.NPP.total"]], "total() (quapy.protocol.usimplexpp method)": [[8, "quapy.protocol.USimplexPP.total"]], "uniform_prevalence_sampling() (in module quapy.functional)": [[8, "quapy.functional.uniform_prevalence_sampling"]], "uniform_simplex_sampling() (in module quapy.functional)": [[8, "quapy.functional.uniform_simplex_sampling"]], "bctscalibration (class in quapy.classification.calibration)": [[9, "quapy.classification.calibration.BCTSCalibration"]], "cnnnet (class in quapy.classification.neural)": [[9, "quapy.classification.neural.CNNnet"]], "lstmnet (class in quapy.classification.neural)": [[9, "quapy.classification.neural.LSTMnet"]], "lowranklogisticregression (class in quapy.classification.methods)": [[9, "quapy.classification.methods.LowRankLogisticRegression"]], "nbvscalibration (class in quapy.classification.calibration)": [[9, "quapy.classification.calibration.NBVSCalibration"]], "neuralclassifiertrainer (class in quapy.classification.neural)": [[9, "quapy.classification.neural.NeuralClassifierTrainer"]], "recalibratedprobabilisticclassifier (class in quapy.classification.calibration)": [[9, "quapy.classification.calibration.RecalibratedProbabilisticClassifier"]], "recalibratedprobabilisticclassifierbase (class in quapy.classification.calibration)": [[9, "quapy.classification.calibration.RecalibratedProbabilisticClassifierBase"]], "svmperf (class in quapy.classification.svmperf)": [[9, "quapy.classification.svmperf.SVMperf"]], "tscalibration (class in quapy.classification.calibration)": [[9, "quapy.classification.calibration.TSCalibration"]], "textclassifiernet (class in quapy.classification.neural)": [[9, "quapy.classification.neural.TextClassifierNet"]], "torchdataset (class in quapy.classification.neural)": [[9, "quapy.classification.neural.TorchDataset"]], "vscalibration (class in quapy.classification.calibration)": [[9, "quapy.classification.calibration.VSCalibration"]], "asdataloader() (quapy.classification.neural.torchdataset method)": [[9, "quapy.classification.neural.TorchDataset.asDataloader"]], "classes_ (quapy.classification.calibration.recalibratedprobabilisticclassifierbase property)": [[9, "quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.classes_"]], "decision_function() (quapy.classification.svmperf.svmperf method)": [[9, "quapy.classification.svmperf.SVMperf.decision_function"]], "device (quapy.classification.neural.neuralclassifiertrainer property)": [[9, "quapy.classification.neural.NeuralClassifierTrainer.device"]], "dimensions() (quapy.classification.neural.textclassifiernet method)": [[9, "quapy.classification.neural.TextClassifierNet.dimensions"]], "document_embedding() (quapy.classification.neural.cnnnet method)": [[9, "quapy.classification.neural.CNNnet.document_embedding"]], "document_embedding() (quapy.classification.neural.lstmnet method)": [[9, "quapy.classification.neural.LSTMnet.document_embedding"]], "document_embedding() (quapy.classification.neural.textclassifiernet method)": [[9, "quapy.classification.neural.TextClassifierNet.document_embedding"]], "fit() (quapy.classification.calibration.recalibratedprobabilisticclassifierbase method)": [[9, "quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit"]], "fit() (quapy.classification.methods.lowranklogisticregression method)": [[9, "quapy.classification.methods.LowRankLogisticRegression.fit"]], "fit() (quapy.classification.neural.neuralclassifiertrainer method)": [[9, "quapy.classification.neural.NeuralClassifierTrainer.fit"]], "fit() (quapy.classification.svmperf.svmperf method)": [[9, "quapy.classification.svmperf.SVMperf.fit"]], "fit_cv() (quapy.classification.calibration.recalibratedprobabilisticclassifierbase method)": [[9, "quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_cv"]], "fit_tr_val() (quapy.classification.calibration.recalibratedprobabilisticclassifierbase method)": [[9, "quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_tr_val"]], "forward() (quapy.classification.neural.textclassifiernet method)": [[9, "quapy.classification.neural.TextClassifierNet.forward"]], "get_params() (quapy.classification.methods.lowranklogisticregression method)": [[9, "quapy.classification.methods.LowRankLogisticRegression.get_params"]], "get_params() (quapy.classification.neural.cnnnet method)": [[9, "quapy.classification.neural.CNNnet.get_params"]], "get_params() (quapy.classification.neural.lstmnet method)": [[9, "quapy.classification.neural.LSTMnet.get_params"]], "get_params() (quapy.classification.neural.neuralclassifiertrainer method)": [[9, "quapy.classification.neural.NeuralClassifierTrainer.get_params"]], "get_params() (quapy.classification.neural.textclassifiernet method)": [[9, "quapy.classification.neural.TextClassifierNet.get_params"]], "predict() (quapy.classification.calibration.recalibratedprobabilisticclassifierbase method)": [[9, "quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict"]], "predict() (quapy.classification.methods.lowranklogisticregression method)": [[9, "quapy.classification.methods.LowRankLogisticRegression.predict"]], "predict() (quapy.classification.neural.neuralclassifiertrainer method)": [[9, "quapy.classification.neural.NeuralClassifierTrainer.predict"]], "predict() (quapy.classification.svmperf.svmperf method)": [[9, "quapy.classification.svmperf.SVMperf.predict"]], "predict_proba() (quapy.classification.calibration.recalibratedprobabilisticclassifierbase method)": [[9, "quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict_proba"]], "predict_proba() (quapy.classification.methods.lowranklogisticregression method)": [[9, "quapy.classification.methods.LowRankLogisticRegression.predict_proba"]], "predict_proba() (quapy.classification.neural.neuralclassifiertrainer method)": [[9, "quapy.classification.neural.NeuralClassifierTrainer.predict_proba"]], "predict_proba() (quapy.classification.neural.textclassifiernet method)": [[9, "quapy.classification.neural.TextClassifierNet.predict_proba"]], "quapy.classification": [[9, "module-quapy.classification"]], "quapy.classification.calibration": [[9, "module-quapy.classification.calibration"]], "quapy.classification.methods": [[9, "module-quapy.classification.methods"]], "quapy.classification.neural": [[9, "module-quapy.classification.neural"]], "quapy.classification.svmperf": [[9, "module-quapy.classification.svmperf"]], "reset_net_params() (quapy.classification.neural.neuralclassifiertrainer method)": [[9, "quapy.classification.neural.NeuralClassifierTrainer.reset_net_params"]], "set_params() (quapy.classification.methods.lowranklogisticregression method)": [[9, "quapy.classification.methods.LowRankLogisticRegression.set_params"]], "set_params() (quapy.classification.neural.neuralclassifiertrainer method)": [[9, "quapy.classification.neural.NeuralClassifierTrainer.set_params"]], "set_params() (quapy.classification.svmperf.svmperf method)": [[9, "quapy.classification.svmperf.SVMperf.set_params"]], "training (quapy.classification.neural.cnnnet attribute)": [[9, "quapy.classification.neural.CNNnet.training"]], "training (quapy.classification.neural.lstmnet attribute)": [[9, "quapy.classification.neural.LSTMnet.training"]], "training (quapy.classification.neural.textclassifiernet attribute)": [[9, "quapy.classification.neural.TextClassifierNet.training"]], "transform() (quapy.classification.methods.lowranklogisticregression method)": [[9, "quapy.classification.methods.LowRankLogisticRegression.transform"]], "transform() (quapy.classification.neural.neuralclassifiertrainer method)": [[9, "quapy.classification.neural.NeuralClassifierTrainer.transform"]], "valid_losses (quapy.classification.svmperf.svmperf attribute)": [[9, "quapy.classification.svmperf.SVMperf.valid_losses"]], "vocabulary_size (quapy.classification.neural.cnnnet property)": [[9, "quapy.classification.neural.CNNnet.vocabulary_size"]], "vocabulary_size (quapy.classification.neural.lstmnet property)": [[9, "quapy.classification.neural.LSTMnet.vocabulary_size"]], "vocabulary_size (quapy.classification.neural.textclassifiernet property)": [[9, "quapy.classification.neural.TextClassifierNet.vocabulary_size"]], "xavier_uniform() (quapy.classification.neural.textclassifiernet method)": [[9, "quapy.classification.neural.TextClassifierNet.xavier_uniform"]], "dataset (class in quapy.data.base)": [[10, "quapy.data.base.Dataset"]], "indextransformer (class in quapy.data.preprocessing)": [[10, "quapy.data.preprocessing.IndexTransformer"]], "labelledcollection (class in quapy.data.base)": [[10, "quapy.data.base.LabelledCollection"]], "splitstratified() (quapy.data.base.dataset class method)": [[10, "quapy.data.base.Dataset.SplitStratified"]], "x (quapy.data.base.labelledcollection property)": [[10, "quapy.data.base.LabelledCollection.X"]], "xp (quapy.data.base.labelledcollection property)": [[10, "quapy.data.base.LabelledCollection.Xp"]], "xy (quapy.data.base.labelledcollection property)": [[10, "quapy.data.base.LabelledCollection.Xy"]], "add_word() (quapy.data.preprocessing.indextransformer method)": [[10, "quapy.data.preprocessing.IndexTransformer.add_word"]], "binarize() (in module quapy.data.reader)": [[10, "quapy.data.reader.binarize"]], "binary (quapy.data.base.dataset property)": [[10, "quapy.data.base.Dataset.binary"]], "binary (quapy.data.base.labelledcollection property)": [[10, "quapy.data.base.LabelledCollection.binary"]], "classes_ (quapy.data.base.dataset property)": [[10, "quapy.data.base.Dataset.classes_"]], "counts() (quapy.data.base.labelledcollection method)": [[10, "quapy.data.base.LabelledCollection.counts"]], "fetch_ucidataset() (in module quapy.data.datasets)": [[10, "quapy.data.datasets.fetch_UCIDataset"]], "fetch_ucilabelledcollection() (in module quapy.data.datasets)": [[10, "quapy.data.datasets.fetch_UCILabelledCollection"]], "fetch_lequa2022() (in module quapy.data.datasets)": [[10, "quapy.data.datasets.fetch_lequa2022"]], "fetch_reviews() (in module quapy.data.datasets)": [[10, "quapy.data.datasets.fetch_reviews"]], "fetch_twitter() (in module quapy.data.datasets)": [[10, "quapy.data.datasets.fetch_twitter"]], "fit() (quapy.data.preprocessing.indextransformer method)": [[10, "quapy.data.preprocessing.IndexTransformer.fit"]], "fit_transform() (quapy.data.preprocessing.indextransformer method)": [[10, "quapy.data.preprocessing.IndexTransformer.fit_transform"]], "from_csv() (in module quapy.data.reader)": [[10, "quapy.data.reader.from_csv"]], "from_sparse() (in module quapy.data.reader)": [[10, "quapy.data.reader.from_sparse"]], "from_text() (in module quapy.data.reader)": [[10, "quapy.data.reader.from_text"]], "index() (in module quapy.data.preprocessing)": [[10, "quapy.data.preprocessing.index"]], "kfcv() (quapy.data.base.dataset class method)": [[10, "quapy.data.base.Dataset.kFCV"]], "kfcv() (quapy.data.base.labelledcollection method)": [[10, "quapy.data.base.LabelledCollection.kFCV"]], "load() (quapy.data.base.dataset class method)": [[10, "quapy.data.base.Dataset.load"]], "load() (quapy.data.base.labelledcollection class method)": [[10, "quapy.data.base.LabelledCollection.load"]], "mix() (quapy.data.base.labelledcollection class method)": [[10, "quapy.data.base.LabelledCollection.mix"]], "n_classes (quapy.data.base.dataset property)": [[10, "quapy.data.base.Dataset.n_classes"]], "n_classes (quapy.data.base.labelledcollection property)": [[10, "quapy.data.base.LabelledCollection.n_classes"]], "p (quapy.data.base.labelledcollection property)": [[10, "quapy.data.base.LabelledCollection.p"]], "prevalence() (quapy.data.base.labelledcollection method)": [[10, "quapy.data.base.LabelledCollection.prevalence"]], "quapy.data": [[10, "module-quapy.data"]], "quapy.data.base": [[10, "module-quapy.data.base"]], "quapy.data.datasets": [[10, "module-quapy.data.datasets"]], "quapy.data.preprocessing": [[10, "module-quapy.data.preprocessing"]], "quapy.data.reader": [[10, "module-quapy.data.reader"]], "reduce_columns() (in module quapy.data.preprocessing)": [[10, "quapy.data.preprocessing.reduce_columns"]], "reindex_labels() (in module quapy.data.reader)": [[10, "quapy.data.reader.reindex_labels"]], "sampling() (quapy.data.base.labelledcollection method)": [[10, "quapy.data.base.LabelledCollection.sampling"]], "sampling_from_index() (quapy.data.base.labelledcollection method)": [[10, "quapy.data.base.LabelledCollection.sampling_from_index"]], "sampling_index() (quapy.data.base.labelledcollection method)": [[10, "quapy.data.base.LabelledCollection.sampling_index"]], "split_random() (quapy.data.base.labelledcollection method)": [[10, "quapy.data.base.LabelledCollection.split_random"]], "split_stratified() (quapy.data.base.labelledcollection method)": [[10, "quapy.data.base.LabelledCollection.split_stratified"]], "standardize() (in module quapy.data.preprocessing)": [[10, "quapy.data.preprocessing.standardize"]], "stats() (quapy.data.base.dataset method)": [[10, "quapy.data.base.Dataset.stats"]], "stats() (quapy.data.base.labelledcollection method)": [[10, "quapy.data.base.LabelledCollection.stats"]], "text2tfidf() (in module quapy.data.preprocessing)": [[10, "quapy.data.preprocessing.text2tfidf"]], "train_test (quapy.data.base.dataset property)": [[10, "quapy.data.base.Dataset.train_test"]], "transform() (quapy.data.preprocessing.indextransformer method)": [[10, "quapy.data.preprocessing.IndexTransformer.transform"]], "uniform_sampling() (quapy.data.base.labelledcollection method)": [[10, "quapy.data.base.LabelledCollection.uniform_sampling"]], "uniform_sampling_index() (quapy.data.base.labelledcollection method)": [[10, "quapy.data.base.LabelledCollection.uniform_sampling_index"]], "vocabulary_size (quapy.data.base.dataset property)": [[10, "quapy.data.base.Dataset.vocabulary_size"]], "vocabulary_size() (quapy.data.preprocessing.indextransformer method)": [[10, "quapy.data.preprocessing.IndexTransformer.vocabulary_size"]], "warn() (in module quapy.data.datasets)": [[10, "quapy.data.datasets.warn"]], "y (quapy.data.base.labelledcollection property)": [[10, "quapy.data.base.LabelledCollection.y"]], "acc (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.ACC"]], "adjustedclassifyandcount (in module quapy.method.aggregative)": [[11, "quapy.method.aggregative.AdjustedClassifyAndCount"]], "aggregativeprobabilisticquantifier (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.AggregativeProbabilisticQuantifier"]], "aggregativequantifier (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.AggregativeQuantifier"]], "basequantifier (class in quapy.method.base)": [[11, "quapy.method.base.BaseQuantifier"]], "binaryquantifier (class in quapy.method.base)": [[11, "quapy.method.base.BinaryQuantifier"]], "cc (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.CC"]], "classifyandcount (in module quapy.method.aggregative)": [[11, "quapy.method.aggregative.ClassifyAndCount"]], "distributionmatching (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.DistributionMatching"]], "dys (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.DyS"]], "eacc() (in module quapy.method.meta)": [[11, "quapy.method.meta.EACC"]], "ecc() (in module quapy.method.meta)": [[11, "quapy.method.meta.ECC"]], "eemq() (in module quapy.method.meta)": [[11, "quapy.method.meta.EEMQ"]], "ehdy() (in module quapy.method.meta)": [[11, "quapy.method.meta.EHDy"]], "elm (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.ELM"]], "em() (quapy.method.aggregative.emq class method)": [[11, "quapy.method.aggregative.EMQ.EM"]], "emq (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.EMQ"]], "epacc() (in module quapy.method.meta)": [[11, "quapy.method.meta.EPACC"]], "epsilon (quapy.method.aggregative.emq attribute)": [[11, "quapy.method.aggregative.EMQ.EPSILON"]], "ensemble (class in quapy.method.meta)": [[11, "quapy.method.meta.Ensemble"]], "expectationmaximizationquantifier (in module quapy.method.aggregative)": [[11, "quapy.method.aggregative.ExpectationMaximizationQuantifier"]], "explicitlossminimisation (in module quapy.method.aggregative)": [[11, "quapy.method.aggregative.ExplicitLossMinimisation"]], "hdy (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.HDy"]], "hellingerdistancey (in module quapy.method.aggregative)": [[11, "quapy.method.aggregative.HellingerDistanceY"]], "max (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.MAX"]], "max_iter (quapy.method.aggregative.emq attribute)": [[11, "quapy.method.aggregative.EMQ.MAX_ITER"]], "ms (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.MS"]], "ms2 (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.MS2"]], "maximumlikelihoodprevalenceestimation (class in quapy.method.non_aggregative)": [[11, "quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation"]], "mediansweep (in module quapy.method.aggregative)": [[11, "quapy.method.aggregative.MedianSweep"]], "mediansweep2 (in module quapy.method.aggregative)": [[11, "quapy.method.aggregative.MedianSweep2"]], "onevsall (class in quapy.method.base)": [[11, "quapy.method.base.OneVsAll"]], "onevsallaggregative (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.OneVsAllAggregative"]], "onevsallgeneric (class in quapy.method.base)": [[11, "quapy.method.base.OneVsAllGeneric"]], "pacc (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.PACC"]], "pcc (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.PCC"]], "probabilisticadjustedclassifyandcount (in module quapy.method.aggregative)": [[11, "quapy.method.aggregative.ProbabilisticAdjustedClassifyAndCount"]], "probabilisticclassifyandcount (in module quapy.method.aggregative)": [[11, "quapy.method.aggregative.ProbabilisticClassifyAndCount"]], "quanetmodule (class in quapy.method.neural)": [[11, "quapy.method.neural.QuaNetModule"]], "quanettrainer (class in quapy.method.neural)": [[11, "quapy.method.neural.QuaNetTrainer"]], "sld (in module quapy.method.aggregative)": [[11, "quapy.method.aggregative.SLD"]], "smm (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.SMM"]], "svmae (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.SVMAE"]], "svmkld (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.SVMKLD"]], "svmnkld (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.SVMNKLD"]], "svmq (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.SVMQ"]], "svmrae (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.SVMRAE"]], "t50 (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.T50"]], "thresholdoptimization (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.ThresholdOptimization"]], "valid_policies (quapy.method.meta.ensemble attribute)": [[11, "quapy.method.meta.Ensemble.VALID_POLICIES"]], "x (class in quapy.method.aggregative)": [[11, "quapy.method.aggregative.X"]], "aggregate() (quapy.method.aggregative.acc method)": [[11, "quapy.method.aggregative.ACC.aggregate"]], "aggregate() (quapy.method.aggregative.aggregativequantifier method)": [[11, "quapy.method.aggregative.AggregativeQuantifier.aggregate"]], "aggregate() (quapy.method.aggregative.cc method)": [[11, "quapy.method.aggregative.CC.aggregate"]], "aggregate() (quapy.method.aggregative.distributionmatching method)": [[11, "quapy.method.aggregative.DistributionMatching.aggregate"]], "aggregate() (quapy.method.aggregative.dys method)": [[11, "quapy.method.aggregative.DyS.aggregate"]], "aggregate() (quapy.method.aggregative.elm method)": [[11, "quapy.method.aggregative.ELM.aggregate"]], "aggregate() (quapy.method.aggregative.emq method)": [[11, "quapy.method.aggregative.EMQ.aggregate"]], "aggregate() (quapy.method.aggregative.hdy method)": [[11, "quapy.method.aggregative.HDy.aggregate"]], "aggregate() (quapy.method.aggregative.onevsallaggregative method)": [[11, "quapy.method.aggregative.OneVsAllAggregative.aggregate"]], "aggregate() (quapy.method.aggregative.pacc method)": [[11, "quapy.method.aggregative.PACC.aggregate"]], "aggregate() (quapy.method.aggregative.pcc method)": [[11, "quapy.method.aggregative.PCC.aggregate"]], "aggregate() (quapy.method.aggregative.smm method)": [[11, "quapy.method.aggregative.SMM.aggregate"]], "aggregate() (quapy.method.aggregative.thresholdoptimization method)": [[11, "quapy.method.aggregative.ThresholdOptimization.aggregate"]], "aggregative (quapy.method.meta.ensemble property)": [[11, "quapy.method.meta.Ensemble.aggregative"]], "classes_ (quapy.method.aggregative.aggregativequantifier property)": [[11, "quapy.method.aggregative.AggregativeQuantifier.classes_"]], "classes_ (quapy.method.base.onevsallgeneric property)": [[11, "quapy.method.base.OneVsAllGeneric.classes_"]], "classes_ (quapy.method.neural.quanettrainer property)": [[11, "quapy.method.neural.QuaNetTrainer.classes_"]], "classifier (quapy.method.aggregative.aggregativequantifier property)": [[11, "quapy.method.aggregative.AggregativeQuantifier.classifier"]], "classify() (quapy.method.aggregative.acc method)": [[11, "quapy.method.aggregative.ACC.classify"]], "classify() (quapy.method.aggregative.aggregativeprobabilisticquantifier method)": [[11, "quapy.method.aggregative.AggregativeProbabilisticQuantifier.classify"]], "classify() (quapy.method.aggregative.aggregativequantifier method)": [[11, "quapy.method.aggregative.AggregativeQuantifier.classify"]], "classify() (quapy.method.aggregative.elm method)": [[11, "quapy.method.aggregative.ELM.classify"]], "classify() (quapy.method.aggregative.onevsallaggregative method)": [[11, "quapy.method.aggregative.OneVsAllAggregative.classify"]], "classify() (quapy.method.aggregative.pacc method)": [[11, "quapy.method.aggregative.PACC.classify"]], "clean_checkpoint() (quapy.method.neural.quanettrainer method)": [[11, "quapy.method.neural.QuaNetTrainer.clean_checkpoint"]], "clean_checkpoint_dir() (quapy.method.neural.quanettrainer method)": [[11, "quapy.method.neural.QuaNetTrainer.clean_checkpoint_dir"]], "cross_generate_predictions() (in module quapy.method.aggregative)": [[11, "quapy.method.aggregative.cross_generate_predictions"]], "cross_generate_predictions_depr() (in module quapy.method.aggregative)": [[11, "quapy.method.aggregative.cross_generate_predictions_depr"]], "device (quapy.method.neural.quanetmodule property)": [[11, "quapy.method.neural.QuaNetModule.device"]], "ensemblefactory() (in module quapy.method.meta)": [[11, "quapy.method.meta.ensembleFactory"]], "fit() (quapy.method.aggregative.acc method)": [[11, "quapy.method.aggregative.ACC.fit"]], "fit() (quapy.method.aggregative.aggregativequantifier method)": [[11, "quapy.method.aggregative.AggregativeQuantifier.fit"]], "fit() (quapy.method.aggregative.cc method)": [[11, "quapy.method.aggregative.CC.fit"]], "fit() (quapy.method.aggregative.distributionmatching method)": [[11, "quapy.method.aggregative.DistributionMatching.fit"]], "fit() (quapy.method.aggregative.dys method)": [[11, "quapy.method.aggregative.DyS.fit"]], "fit() (quapy.method.aggregative.elm method)": [[11, "quapy.method.aggregative.ELM.fit"]], "fit() (quapy.method.aggregative.emq method)": [[11, "quapy.method.aggregative.EMQ.fit"]], "fit() (quapy.method.aggregative.hdy method)": [[11, "quapy.method.aggregative.HDy.fit"]], "fit() (quapy.method.aggregative.pacc method)": [[11, "quapy.method.aggregative.PACC.fit"]], "fit() (quapy.method.aggregative.pcc method)": [[11, "quapy.method.aggregative.PCC.fit"]], "fit() (quapy.method.aggregative.smm method)": [[11, "quapy.method.aggregative.SMM.fit"]], "fit() (quapy.method.aggregative.thresholdoptimization method)": [[11, "quapy.method.aggregative.ThresholdOptimization.fit"]], "fit() (quapy.method.base.basequantifier method)": [[11, "quapy.method.base.BaseQuantifier.fit"]], "fit() (quapy.method.base.onevsallgeneric method)": [[11, "quapy.method.base.OneVsAllGeneric.fit"]], "fit() (quapy.method.meta.ensemble method)": [[11, "quapy.method.meta.Ensemble.fit"]], "fit() (quapy.method.neural.quanettrainer method)": [[11, "quapy.method.neural.QuaNetTrainer.fit"]], "fit() (quapy.method.non_aggregative.maximumlikelihoodprevalenceestimation method)": [[11, "quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.fit"]], "forward() (quapy.method.neural.quanetmodule method)": [[11, "quapy.method.neural.QuaNetModule.forward"]], "getonevsall() (in module quapy.method.base)": [[11, "quapy.method.base.getOneVsAll"]], "getptecondestim() (quapy.method.aggregative.acc class method)": [[11, "quapy.method.aggregative.ACC.getPteCondEstim"]], "getptecondestim() (quapy.method.aggregative.pacc class method)": [[11, "quapy.method.aggregative.PACC.getPteCondEstim"]], "get_params() (quapy.method.meta.ensemble method)": [[11, "quapy.method.meta.Ensemble.get_params"]], "get_params() (quapy.method.neural.quanettrainer method)": [[11, "quapy.method.neural.QuaNetTrainer.get_params"]], "get_probability_distribution() (in module quapy.method.meta)": [[11, "quapy.method.meta.get_probability_distribution"]], "mae_loss() (in module quapy.method.neural)": [[11, "quapy.method.neural.mae_loss"]], "predict_proba() (quapy.method.aggregative.emq method)": [[11, "quapy.method.aggregative.EMQ.predict_proba"]], "probabilistic (quapy.method.meta.ensemble property)": [[11, "quapy.method.meta.Ensemble.probabilistic"]], "quantify() (quapy.method.aggregative.aggregativequantifier method)": [[11, "quapy.method.aggregative.AggregativeQuantifier.quantify"]], "quantify() (quapy.method.base.basequantifier method)": [[11, "quapy.method.base.BaseQuantifier.quantify"]], "quantify() (quapy.method.base.onevsallgeneric method)": [[11, "quapy.method.base.OneVsAllGeneric.quantify"]], "quantify() (quapy.method.meta.ensemble method)": [[11, "quapy.method.meta.Ensemble.quantify"]], "quantify() (quapy.method.neural.quanettrainer method)": [[11, "quapy.method.neural.QuaNetTrainer.quantify"]], "quantify() (quapy.method.non_aggregative.maximumlikelihoodprevalenceestimation method)": [[11, "quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.quantify"]], "quapy.method": [[11, "module-quapy.method"]], "quapy.method.aggregative": [[11, "module-quapy.method.aggregative"]], "quapy.method.base": [[11, "module-quapy.method.base"]], "quapy.method.meta": [[11, "module-quapy.method.meta"]], "quapy.method.neural": [[11, "module-quapy.method.neural"]], "quapy.method.non_aggregative": [[11, "module-quapy.method.non_aggregative"]], "set_params() (quapy.method.meta.ensemble method)": [[11, "quapy.method.meta.Ensemble.set_params"]], "set_params() (quapy.method.neural.quanettrainer method)": [[11, "quapy.method.neural.QuaNetTrainer.set_params"]], "solve_adjustment() (quapy.method.aggregative.acc class method)": [[11, "quapy.method.aggregative.ACC.solve_adjustment"]], "training (quapy.method.neural.quanetmodule attribute)": [[11, "quapy.method.neural.QuaNetModule.training"]]}})