.. |
build_Amazon_datasets.py
|
script for genearting the datasets
|
2022-03-03 14:40:11 +01:00 |
evaluation.py
|
generating features from RoBERTa, testing them on Amazons data
|
2022-03-16 19:12:45 +01:00 |
finetune_bert.py
|
generating features from RoBERTa, testing them on Amazons data
|
2022-03-16 19:12:45 +01:00 |
finetuning_batch.sh
|
generating features from RoBERTa, testing them on Amazons data
|
2022-03-16 19:12:45 +01:00 |
gen_tables.py
|
generating features from RoBERTa, testing them on Amazons data
|
2022-03-16 19:12:45 +01:00 |
generate_bert_vectors_npytxt.py
|
generating features from RoBERTa, testing them on Amazons data
|
2022-03-16 19:12:45 +01:00 |
inspect_dataset.py
|
fisrt commit, lets put here some code for ordinal quantification
|
2022-01-27 12:41:32 +01:00 |
main.py
|
generating features from RoBERTa, testing them on Amazons data
|
2022-03-16 19:12:45 +01:00 |
model.py
|
adding sample_weight to ordinal-aware classifiers
|
2022-03-10 18:28:49 +01:00 |
partition_dataset_by_shift.py
|
generating features from RoBERTa, testing them on Amazons data
|
2022-03-16 19:12:45 +01:00 |
partition_dataset_by_smoothness.py
|
generating features from RoBERTa, testing them on Amazons data
|
2022-03-16 19:12:45 +01:00 |
preprocess_dataset.py
|
generating features from RoBERTa, testing them on Amazons data
|
2022-03-16 19:12:45 +01:00 |
preprocess_dataset_npytxt2pkl.py
|
generating features from RoBERTa, testing them on Amazons data
|
2022-03-16 19:12:45 +01:00 |
preprocess_dataset_tfidf.py
|
generating features from RoBERTa, testing them on Amazons data
|
2022-03-16 19:12:45 +01:00 |
tabular.py
|
adding sample_weight to ordinal-aware classifiers
|
2022-03-10 18:28:49 +01:00 |
utils.py
|
generating features from RoBERTa, testing them on Amazons data
|
2022-03-16 19:12:45 +01:00 |