forked from moreo/QuaPy
337 lines
11 KiB
Python
337 lines
11 KiB
Python
import numpy as np
|
|
from sklearn.base import BaseEstimator
|
|
from sklearn.linear_model import LogisticRegression
|
|
|
|
import quapy as qp
|
|
from sklearn import clone
|
|
from sklearn.metrics import confusion_matrix
|
|
import scipy
|
|
from scipy.sparse import issparse, csr_matrix
|
|
|
|
from data import LabelledCollection
|
|
from abc import ABC, abstractmethod
|
|
from sklearn.model_selection import cross_val_predict
|
|
|
|
from quapy.protocol import UPP
|
|
from quapy.method.base import BaseQuantifier
|
|
from quapy.method.aggregative import PACC
|
|
import quapy.functional as F
|
|
|
|
|
|
class ClassifierAccuracyPrediction(ABC):
|
|
def __init__(self, h: BaseEstimator, acc: callable):
|
|
self.h = h
|
|
self.acc = acc
|
|
|
|
@abstractmethod
|
|
def fit(self, val: LabelledCollection):
|
|
...
|
|
|
|
def predict(self, X):
|
|
"""
|
|
Evaluates the accuracy function on the predicted contingency table
|
|
|
|
:param X: test data
|
|
:return: float
|
|
"""
|
|
return ...
|
|
|
|
def true_acc(self, sample: LabelledCollection):
|
|
y_pred = self.h.predict(sample.X)
|
|
y_true = sample.y
|
|
conf_table = confusion_matrix(y_true, y_pred=y_pred, labels=sample.classes_)
|
|
return self.acc(conf_table)
|
|
|
|
|
|
class CAPContingencyTable(ClassifierAccuracyPrediction):
|
|
|
|
def __init__(self, h: BaseEstimator, acc: callable):
|
|
self.h = h
|
|
self.acc = acc
|
|
|
|
@abstractmethod
|
|
def fit(self, val: LabelledCollection):
|
|
...
|
|
|
|
def predict(self, X):
|
|
"""
|
|
Evaluates the accuracy function on the predicted contingency table
|
|
|
|
:param X: test data
|
|
:return: float
|
|
"""
|
|
cont_table = self.predict_ct(X)
|
|
raw_acc = self.acc(cont_table)
|
|
norm_acc = np.clip(raw_acc, 0, 1)
|
|
return norm_acc
|
|
|
|
@abstractmethod
|
|
def predict_ct(self, X):
|
|
"""
|
|
Predicts the contingency table for the test data
|
|
|
|
:param X: test data
|
|
:return: a contingency table
|
|
"""
|
|
...
|
|
|
|
|
|
class NaiveCAP(CAPContingencyTable):
|
|
"""
|
|
The Naive CAP is a method that relies on the IID assumption, and thus uses the estimation in the validation data
|
|
as an estimate for the test data.
|
|
"""
|
|
def __init__(self, h: BaseEstimator, acc: callable):
|
|
super().__init__(h, acc)
|
|
|
|
def fit(self, val: LabelledCollection):
|
|
y_hat = self.h.predict(val.X)
|
|
y_true = val.y
|
|
self.cont_table = confusion_matrix(y_true, y_pred=y_hat, labels=val.classes_)
|
|
return self
|
|
|
|
def predict_ct(self, test):
|
|
"""
|
|
This method disregards the test set, under the assumption that it is IID wrt the training. This meaning that
|
|
the confusion matrix for the test data should coincide with the one computed for training (using any cross
|
|
validation strategy).
|
|
|
|
:param test: test collection (ignored)
|
|
:return: a confusion matrix in the return format of `sklearn.metrics.confusion_matrix`
|
|
"""
|
|
return self.cont_table
|
|
|
|
|
|
class ContTableTransferCAP(CAPContingencyTable):
|
|
"""
|
|
|
|
"""
|
|
def __init__(self, h: BaseEstimator, acc: callable, q: BaseQuantifier):
|
|
super().__init__(h, acc)
|
|
self.q = q
|
|
|
|
def fit(self, val: LabelledCollection):
|
|
y_hat = self.h.predict(val.X)
|
|
y_true = val.y
|
|
self.cont_table = confusion_matrix(y_true, y_pred=y_hat, labels=val.classes_)
|
|
self.train_prev = val.prevalence()
|
|
self.q.fit(val)
|
|
return self
|
|
|
|
def predict_ct(self, test):
|
|
"""
|
|
:param test: test collection (ignored)
|
|
:return: a confusion matrix in the return format of `sklearn.metrics.confusion_matrix`
|
|
"""
|
|
prev_hat = self.q.quantify(test)
|
|
adjustment = prev_hat / self.train_prev
|
|
return self.cont_table * adjustment[:, np.newaxis]
|
|
|
|
|
|
class ContTableWithHTransferCAP(CAPContingencyTable):
|
|
"""
|
|
|
|
"""
|
|
def __init__(self, h: BaseEstimator, acc: callable, q_class):
|
|
super().__init__(h, acc)
|
|
self.q = q_class(classifier=h)
|
|
|
|
def fit(self, val: LabelledCollection):
|
|
y_hat = self.h.predict(val.X)
|
|
y_true = val.y
|
|
self.cont_table = confusion_matrix(y_true, y_pred=y_hat, labels=val.classes_)
|
|
self.train_prev = val.prevalence()
|
|
self.q.fit(val, fit_classifier=False, val_split=val)
|
|
return self
|
|
|
|
def predict_ct(self, test):
|
|
"""
|
|
:param test: test collection (ignored)
|
|
:return: a confusion matrix in the return format of `sklearn.metrics.confusion_matrix`
|
|
"""
|
|
test_prev_estim = self.q.quantify(test)
|
|
adjustment = test_prev_estim / self.train_prev
|
|
return self.cont_table * adjustment[:, np.newaxis]
|
|
|
|
|
|
class NsquaredEquationsCAP(CAPContingencyTable):
|
|
"""
|
|
|
|
"""
|
|
def __init__(self, h: BaseEstimator, acc: callable, q_class, reuse_h=False):
|
|
super().__init__(h, acc)
|
|
self.reuse_h = reuse_h
|
|
if reuse_h:
|
|
self.q = q_class(classifier=h)
|
|
else:
|
|
self.q = q_class(classifier=LogisticRegression())
|
|
|
|
def fit(self, val: LabelledCollection):
|
|
y_hat = self.h.predict(val.X)
|
|
y_true = val.y
|
|
self.cont_table = confusion_matrix(y_true, y_pred=y_hat, labels=val.classes_)
|
|
if self.reuse_h:
|
|
self.q.fit(val, fit_classifier=False, val_split=val)
|
|
else:
|
|
self.q.fit(val)
|
|
self.A, self.partial_b = self._construct_equations()
|
|
return self
|
|
|
|
def _construct_equations(self):
|
|
# we need a n x n matrix of unknowns
|
|
n = self.cont_table.shape[1]
|
|
|
|
# I is the matrix of indexes of unknowns. For example, if we need the counts of
|
|
# all instances belonging to class i that have been classified as belonging to 0, 1, ..., n:
|
|
# the indexes of the corresponding unknowns are given by I[i,:]
|
|
I = np.arange(n * n).reshape(n, n)
|
|
|
|
# system of equations: Ax=b, A.shape=(n*n, n*n,), b.shape=(n*n,)
|
|
A = np.zeros(shape=(n * n, n * n))
|
|
b = np.zeros(shape=(n * n))
|
|
|
|
# first equation: the sum of all unknowns is 1
|
|
eq_no = 0
|
|
A[eq_no, :] = 1
|
|
b[eq_no] = 1
|
|
eq_no += 1
|
|
|
|
# (n-1)*(n-1) equations: the class cond rations should be the same in training and in test due to the
|
|
# PPS assumptions. Example in three classes, a ratio: a/(a+b+c) [test] = ar [a ratio in training]
|
|
# a / (a + b + c) = ar
|
|
# a = (a + b + c) * ar
|
|
# a = a ar + b ar + c ar
|
|
# a - a ar - b ar - c ar = 0
|
|
# a (1-ar) + b (-ar) + c (-ar) = 0
|
|
class_cond_ratios_tr = self.cont_table / self.cont_table.sum(axis=1, keepdims=True)
|
|
for i in range(1, n):
|
|
for j in range(1, n):
|
|
ratio_ij = class_cond_ratios_tr[i, j]
|
|
A[eq_no, I[i, :]] = -ratio_ij
|
|
A[eq_no, I[i, j]] = 1 - ratio_ij
|
|
b[eq_no] = 0
|
|
eq_no += 1
|
|
|
|
# n-1 equations: the sum of class-cond counts must equal the C&C prevalence prediction
|
|
for i in range(1, n):
|
|
A[eq_no, I[:, i]] = 1
|
|
#b[eq_no] = cc_prev_estim[i]
|
|
eq_no += 1
|
|
|
|
# n-1 equations: the sum of true true class-conditional positives must equal the class prev label in test
|
|
for i in range(1, n):
|
|
A[eq_no, I[i, :]] = 1
|
|
#b[eq_no] = q_prev_estim[i]
|
|
eq_no += 1
|
|
|
|
return A, b
|
|
|
|
def predict_ct(self, test):
|
|
"""
|
|
:param test: test collection (ignored)
|
|
:return: a confusion matrix in the return format of `sklearn.metrics.confusion_matrix`
|
|
"""
|
|
|
|
n = self.cont_table.shape[1]
|
|
|
|
h_label_preds = self.h.predict(test)
|
|
cc_prev_estim = F.prevalence_from_labels(h_label_preds, self.h.classes_)
|
|
q_prev_estim = self.q.quantify(test)
|
|
|
|
A = self.A
|
|
b = self.partial_b
|
|
|
|
# b is partially filled; we finish the vector by plugin in the classify and count
|
|
# prevalence estimates (n-1 values only), and the quantification estimates (n-1 values only)
|
|
|
|
b[-2*(n-1):-(n-1)] = cc_prev_estim[1:]
|
|
b[-(n-1):] = q_prev_estim[1:]
|
|
|
|
x = np.linalg.solve(A, b)
|
|
|
|
cont_table_test = x.reshape(n,n)
|
|
return cont_table_test
|
|
|
|
|
|
class SebastianiCAP(ClassifierAccuracyPrediction):
|
|
|
|
def __init__(self, h, acc_fn, q_class, n_val_samples=500, alpha=0.3):
|
|
self.h = h
|
|
self.acc = acc_fn
|
|
self.q = q_class(h)
|
|
self.n_val_samples = n_val_samples
|
|
self.alpha = alpha
|
|
self.sample_size = qp.environ['SAMPLE_SIZE']
|
|
|
|
def fit(self, val: LabelledCollection):
|
|
v2, v1 = val.split_stratified(train_prop=0.5)
|
|
self.q.fit(v1, fit_classifier=False, val_split=v1)
|
|
|
|
# precompute classifier predictions on samples
|
|
gen_samples = UPP(v2, repeats=self.n_val_samples, sample_size=self.sample_size, return_type='labelled_collection')
|
|
self.sigma_acc = [self.true_acc(sigma_i) for sigma_i in gen_samples()]
|
|
|
|
# precompute prevalence predictions on samples
|
|
gen_samples.on_preclassified_instances(self.q.classify(v2.X), in_place=True)
|
|
self.sigma_pred_prevs = [self.q.aggregate(sigma_i.X) for sigma_i in gen_samples()]
|
|
|
|
def predict(self, X):
|
|
test_pred_prev = self.q.quantify(X)
|
|
|
|
if self.alpha > 0:
|
|
# select samples from V2 with predicted prevalence close to the predicted prevalence for U
|
|
selected_accuracies = []
|
|
for pred_prev_i, acc_i in zip(self.sigma_pred_prevs, self.sigma_acc):
|
|
max_discrepancy = np.max(np.abs(pred_prev_i - test_pred_prev))
|
|
if max_discrepancy < self.alpha:
|
|
selected_accuracies.append(acc_i)
|
|
|
|
return np.median(selected_accuracies)
|
|
else:
|
|
# mean average, weights samples from V2 according to the closeness of predicted prevalence in U
|
|
accum_weight = 0
|
|
moving_mean = 0
|
|
epsilon = 10E-4
|
|
for pred_prev_i, acc_i in zip(self.sigma_pred_prevs, self.sigma_acc):
|
|
max_discrepancy = np.max(np.abs(pred_prev_i - test_pred_prev))
|
|
weight = -np.log(max_discrepancy+epsilon)
|
|
accum_weight += weight
|
|
moving_mean += (weight*acc_i)
|
|
|
|
return moving_mean/accum_weight
|
|
|
|
|
|
class PabloCAP(ClassifierAccuracyPrediction):
|
|
|
|
def __init__(self, h, acc_fn, q_class, n_val_samples=50, aggr='mean'):
|
|
self.h = h
|
|
self.acc = acc_fn
|
|
self.q = q_class(h)
|
|
self.n_val_samples = n_val_samples
|
|
self.aggr = aggr
|
|
assert aggr in ['mean', 'median'], 'unknown aggregation function, use mean or median'
|
|
|
|
def fit(self, val: LabelledCollection):
|
|
self.q.fit(val)
|
|
label_predictions = self.h.predict(val.X)
|
|
self.pre_classified = LabelledCollection(instances=label_predictions, labels=val.labels)
|
|
|
|
def predict(self, X):
|
|
pred_prev = F.smooth(self.q.quantify(X))
|
|
X_size = X.shape[0]
|
|
acc_estim = []
|
|
for _ in range(self.n_val_samples):
|
|
sigma_i = self.pre_classified.sampling(X_size, *pred_prev[:-1])
|
|
y_pred, y_true = sigma_i.Xy
|
|
conf_table = confusion_matrix(y_true, y_pred=y_pred, labels=sigma_i.classes_)
|
|
acc_i = self.acc(conf_table)
|
|
acc_estim.append(acc_i)
|
|
if self.aggr == 'mean':
|
|
return np.mean(acc_estim)
|
|
elif self.aggr == 'median':
|
|
return np.median(acc_estim)
|
|
else:
|
|
raise ValueError('unknown aggregation function')
|
|
|
|
|