1
0
Fork 0
QuaPy/quapy/method/base.py

114 lines
3.9 KiB
Python

from abc import ABCMeta, abstractmethod
from copy import deepcopy
import quapy as qp
from quapy.data import LabelledCollection
# Base Quantifier abstract class
# ------------------------------------
class BaseQuantifier(metaclass=ABCMeta):
"""
Abstract Quantifier. A quantifier is defined as an object of a class that implements the method :meth:`fit` on
:class:`quapy.data.base.LabelledCollection`, the method :meth:`quantify`, and the :meth:`set_params` and
:meth:`get_params` for model selection (see :meth:`quapy.model_selection.GridSearchQ`)
"""
@abstractmethod
def fit(self, data: LabelledCollection):
"""
Trains a quantifier.
:param data: a :class:`quapy.data.base.LabelledCollection` consisting of the training data
:return: self
"""
...
@abstractmethod
def quantify(self, instances):
"""
Generate class prevalence estimates for the sample's instances
:param instances: array-like
:return: `np.ndarray` of shape `(self.n_classes_,)` with class prevalence estimates.
"""
...
@abstractmethod
def set_params(self, **parameters):
"""
Set the parameters of the quantifier.
:param parameters: dictionary of param-value pairs
"""
...
@abstractmethod
def get_params(self, deep=True):
"""
Return the current parameters of the quantifier.
:param deep: for compatibility with sklearn
:return: a dictionary of param-value pairs
"""
...
class BinaryQuantifier(BaseQuantifier):
"""
Abstract class of binary quantifiers, i.e., quantifiers estimating class prevalence values for only two classes
(typically, to be interpreted as one class and its complement).
"""
def _check_binary(self, data: LabelledCollection, quantifier_name):
assert data.binary, f'{quantifier_name} works only on problems of binary classification. ' \
f'Use the class OneVsAll to enable {quantifier_name} work on single-label data.'
class OneVsAllGeneric:
"""
Allows any binary quantifier to perform quantification on single-label datasets. The method maintains one binary
quantifier for each class, and then l1-normalizes the outputs so that the class prevelences sum up to 1.
"""
def __init__(self, binary_quantifier, n_jobs=None):
assert isinstance(binary_quantifier, BaseQuantifier), \
f'{binary_quantifier} does not seem to be a Quantifier'
self.binary_quantifier = binary_quantifier
self.n_jobs = qp.get_njobs(n_jobs)
def fit(self, data: LabelledCollection, **kwargs):
assert not data.binary, \
f'{self.__class__.__name__} expect non-binary data'
self.class_quatifier = {c: deepcopy(self.binary_quantifier) for c in data.classes_}
Parallel(n_jobs=self.n_jobs, backend='threading')(
delayed(self._delayed_binary_fit)(c, self.class_quatifier, data, **kwargs) for c in data.classes_
)
return self
def quantify(self, X, *args):
prevalences = np.asarray(
Parallel(n_jobs=self.n_jobs, backend='threading')(
delayed(self._delayed_binary_predict)(c, self.class_quatifier, X) for c in self.classes
)
)
return F.normalize_prevalence(prevalences)
@property
def classes(self):
return sorted(self.class_quatifier.keys())
def set_params(self, **parameters):
self.binary_quantifier.set_params(**parameters)
def get_params(self, deep=True):
return self.binary_quantifier.get_params()
def _delayed_binary_predict(self, c, learners, X):
return learners[c].quantify(X)[:,1] # the mean is the estimation for the positive class prevalence
def _delayed_binary_fit(self, c, learners, data, **kwargs):
bindata = LabelledCollection(data.instances, data.labels == c, n_classes=2)
learners[c].fit(bindata, **kwargs)