1
0
Fork 0
QuaPy/distribution_matching/commons.py

151 lines
6.7 KiB
Python

import numpy as np
import pandas as pd
from distribution_matching.method_kdey import KDEy
from distribution_matching.method_kdey_closed import KDEyclosed
from distribution_matching.method_kdey_closed_efficient_correct import KDEyclosed_efficient_corr
from quapy.method.aggregative import EMQ, CC, PCC, DistributionMatching, PACC, HDy, OneVsAllAggregative, ACC
from distribution_matching.method_dirichlety import DIRy
from sklearn.linear_model import LogisticRegression
from method_kdey_closed_efficient import KDEyclosed_efficient
METHODS = ['EMQ', 'EMQ-C', 'DM', 'DM-T', 'DM-HD', 'KDEy-DMhd3', 'DM-CS', 'KDEy-closed++', 'KDEy-ML'] #['ACC', 'PACC', 'HDy-OvA', 'DIR', 'DM', 'KDEy-DMhd3', 'KDEy-closed++', 'EMQ', 'KDEy-ML'] #, 'KDEy-DMhd2'] #, 'KDEy-DMhd2', 'DM-HD'] 'KDEy-DMjs', 'KDEy-DM', 'KDEy-ML+', 'KDEy-DMhd3+',
BIN_METHODS = [x.replace('-OvA', '') for x in METHODS]
hyper_LR = {
'classifier__C': np.logspace(-3,3,7),
'classifier__class_weight': ['balanced', None]
}
def new_method(method, **lr_kwargs):
lr = LogisticRegression(**lr_kwargs)
if method == 'CC':
param_grid = hyper_LR
quantifier = CC(lr)
elif method == 'PCC':
param_grid = hyper_LR
quantifier = PCC(lr)
elif method == 'ACC':
param_grid = hyper_LR
quantifier = ACC(lr)
elif method == 'PACC':
param_grid = hyper_LR
quantifier = PACC(lr)
elif method == 'KDEy-ML':
method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)}
param_grid = {**method_params, **hyper_LR}
quantifier = KDEy(lr, target='max_likelihood', val_split=10)
elif method == 'KDEy-closed':
method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)}
param_grid = {**method_params, **hyper_LR}
quantifier = KDEyclosed(lr, val_split=10)
elif method == 'KDEy-closed+':
method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)}
param_grid = {**method_params, **hyper_LR}
quantifier = KDEyclosed_efficient(lr, val_split=10)
elif method == 'KDEy-closed++':
method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)}
param_grid = {**method_params, **hyper_LR}
quantifier = KDEyclosed_efficient_corr(lr, val_split=10)
elif method in ['KDEy-DM']:
method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)}
param_grid = {**method_params, **hyper_LR}
quantifier = KDEy(lr, target='min_divergence', divergence='l2', montecarlo_trials=5000, val_split=10)
elif method == 'DIR':
param_grid = hyper_LR
quantifier = DIRy(lr)
elif method == 'EMQ':
param_grid = hyper_LR
quantifier = EMQ(lr)
elif method == 'EMQ-C':
method_params = {'exact_train_prev': [False], 'recalib': ['bcts']}
param_grid = {**method_params, **hyper_LR}
quantifier = EMQ(lr)
elif method == 'HDy-OvA':
param_grid = {'binary_quantifier__' + key: val for key, val in hyper_LR.items()}
quantifier = OneVsAllAggregative(HDy(lr))
elif method == 'DM':
method_params = {
'nbins': [4,8,16,32],
'val_split': [10, 0.4],
'divergence': ['HD', 'topsoe', 'l2']
}
param_grid = {**method_params, **hyper_LR}
quantifier = DistributionMatching(lr)
elif method == 'DM-T':
method_params = {
'nbins': [2,3,4,5,6,7,8,9,10,12,14,16,18,20,22,24,26,28,30,32,64],
'val_split': [10],
'divergence': ['topsoe']
}
param_grid = {**method_params, **hyper_LR}
quantifier = DistributionMatching(lr)
elif method == 'DM-HD':
method_params = {
'nbins': [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 64],
'val_split': [10],
'divergence': ['HD']
}
param_grid = {**method_params, **hyper_LR}
quantifier = DistributionMatching(lr)
elif method == 'DM-CS':
method_params = {
'nbins': [2,3,4,5,6,7,8,9,10,12,14,16,18,20,22,24,26,28,30,32,64],
'val_split': [10],
'divergence': ['CS']
}
param_grid = {**method_params, **hyper_LR}
quantifier = DistributionMatching(lr)
# experimental
elif method in ['KDEy-DMkld']:
method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)}
param_grid = {**method_params, **hyper_LR}
quantifier = KDEy(lr, target='min_divergence', divergence='KLD', montecarlo_trials=5000, val_split=10)
# elif method in ['KDEy-DMhd']:
# The code to reproduce this run is commented in the min_divergence target, I think it was incorrect...
# method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)}
# param_grid = {**method_params, **hyper_LR}
# quantifier = KDEy(lr, target='min_divergence', divergence='HD', montecarlo_trials=5000, val_split=10)
elif method in ['KDEy-DMhd2']:
method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)}
param_grid = {**method_params, **hyper_LR}
quantifier = KDEy(lr, target='min_divergence_uniform', divergence='HD', montecarlo_trials=5000, val_split=10)
elif method in ['KDEy-DMjs']:
method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)}
param_grid = {**method_params, **hyper_LR}
quantifier = KDEy(lr, target='min_divergence_uniform', divergence='JS', montecarlo_trials=5000, val_split=10)
elif method in ['KDEy-DMhd3']:
# I have realized that there was an error. I am sampling from the validation distribution (V) and not from the
# test distribution (T) just because the validation can be sampled in fit only once and pre-computed densities
# can be stored. This means that the reference distribution is V and not T. Then I have found that an
# f-divergence is defined as D(p||q) \int_{R^n}q(x)f(p(x)/q(x))dx = E_{x~q}[f(p(x)/q(x))], so if I am sampling
# V then I am computing D(T||V) (and not D(V||T) as I thought).
method_params = {'bandwidth': np.linspace(0.01, 0.2, 20)}
param_grid = {**method_params, **hyper_LR}
quantifier = KDEy(lr, target='min_divergence', divergence='HD', montecarlo_trials=5000, val_split=10)
elif method == 'DM-HD':
method_params = {
'nbins': [4,8,16,32],
'val_split': [10, 0.4],
}
param_grid = {**method_params, **hyper_LR}
quantifier = DistributionMatching(lr, divergence='HD')
else:
raise NotImplementedError('unknown method', method)
return param_grid, quantifier
def show_results(result_path):
df = pd.read_csv(result_path+'.csv', sep='\t')
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE", "MRAE"])
print(pv)