1
0
Fork 0
QuaPy/plot_example.py

49 lines
1.8 KiB
Python

from sklearn.model_selection import GridSearchCV
import numpy as np
import quapy as qp
from sklearn.linear_model import LogisticRegression
sample_size = 500
qp.environ['SAMPLE_SIZE'] = sample_size
def gen_data():
data = qp.datasets.fetch_reviews('kindle', tfidf=True, min_df=5)
models = [
qp.method.aggregative.CC,
qp.method.aggregative.ACC,
qp.method.aggregative.PCC,
qp.method.aggregative.PACC,
qp.method.aggregative.HDy,
qp.method.aggregative.EMQ,
qp.method.meta.ECC,
qp.method.meta.EACC,
qp.method.meta.EHDy,
]
method_names, true_prevs, estim_prevs, tr_prevs = [], [], [], []
for Quantifier in models:
print(f'training {Quantifier.__name__}')
lr = LogisticRegression(max_iter=1000, class_weight='balanced')
# lr = GridSearchCV(lr, param_grid={'C':np.logspace(-3,3,7)}, n_jobs=-1)
model = Quantifier(lr).fit(data.training)
true_prev, estim_prev = qp.evaluation.artificial_sampling_prediction(
model, data.test, sample_size, n_repetitions=20, n_prevpoints=11)
method_names.append(Quantifier.__name__)
true_prevs.append(true_prev)
estim_prevs.append(estim_prev)
tr_prevs.append(data.training.prevalence())
return method_names, true_prevs, estim_prevs, tr_prevs
method_names, true_prevs, estim_prevs, tr_prevs = qp.util.pickled_resource('./plots/plot_data.pkl', gen_data)
qp.plot.error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, n_bins=11, savepath='./plots/err_drift.png')
qp.plot.binary_diagonal(method_names, true_prevs, estim_prevs, savepath='./plots/bin_diag.png')
qp.plot.binary_bias_global(method_names, true_prevs, estim_prevs, savepath='./plots/bin_bias.png')
qp.plot.binary_bias_bins(method_names, true_prevs, estim_prevs, nbins=11, savepath='./plots/bin_bias_bin.png')