1
0
Fork 0
QuaPy/laboratory/main_lequa.py

59 lines
1.9 KiB
Python

import numpy as np
from sklearn.linear_model import LogisticRegression
import os
import sys
import pandas as pd
import quapy as qp
from quapy.method.aggregative import DistributionMatching
from method_kdey import KDEy
from quapy.model_selection import GridSearchQ
if __name__ == '__main__':
qp.environ['SAMPLE_SIZE'] = qp.datasets.LEQUA2022_SAMPLE_SIZE['T1B']
qp.environ['N_JOBS'] = -1
method = 'KDE'
param = 0.1
div = 'topsoe'
method_identifier = f'{method}_modsel_{div}'
os.makedirs('results', exist_ok=True)
result_path = f'results_LequaT2B/{method_identifier}.csv'
#if os.path.exists(result_path):
# print('Result already exit. Nothing to do')
# sys.exit(0)
with open(result_path, 'wt') as csv:
csv.write(f'Method\tDataset\tMAE\tMRAE\n')
dataset = 'T1B'
train, val_gen, test_gen = qp.datasets.fetch_lequa2022(dataset)
if method == 'KDE':
param_grid = {'bandwidth': np.linspace(0.001, 0.1, 11)}
model = KDEy(LogisticRegression(), divergence=div, bandwidth=param, engine='sklearn')
else:
raise NotImplementedError('unknown method')
modsel = GridSearchQ(model, param_grid, protocol=val_gen, refit=False, n_jobs=-1, verbose=1)
modsel.fit(train)
print(f'best params {modsel.best_params_}')
quantifier = modsel.best_model()
report = qp.evaluation.evaluation_report(quantifier, protocol=test_gen, error_metrics=['mae', 'mrae'], verbose=True)
means = report.mean()
csv.write(f'{method}\tLeQua-{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\n')
csv.flush()
df = pd.read_csv(result_path, sep='\t')
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE", "MRAE"])
print(pv)