1
0
Fork 0
QuaPy/Census/adjacentmedianoptim_4.2.py

96 lines
2.9 KiB
Python

import numpy as np
from sklearn.linear_model import LogisticRegressionCV, LogisticRegression
from Census.methods import AreaQuantifier, AggregationRule, optimize_ensemble
from quapy.data import LabelledCollection
from quapy.method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as MLPE
from quapy.method.aggregative import CC, PCC, ACC, PACC, EMQ, MS, MS2
from commons import *
from table import Table
from tqdm import tqdm
import quapy as qp
from copy import deepcopy
np.set_printoptions(linewidth=np.inf)
def classifier():
return LogisticRegression()
def quantifiers():
cls = classifier()
# yield 'MLPE', MLPE()
yield 'CC', CC(cls)
yield 'PCC', PCC(cls)
yield 'ACC', ACC(cls)
yield 'PACC', PACC(cls)
yield 'MS', MS(cls)
# yield 'MS2', MS2(cls)
# yield 'SLD', EMQ(cls)
survey_y = './data/survey_y.csv'
Atr, Xtr, ytr = load_csv(survey_y, use_yhat=True)
preprocessor = Preprocessor()
Xtr = preprocessor.fit_transform(Xtr)
data = get_dataset_by_area(Atr, Xtr, ytr)
n_areas = len(data)
areas = [Ai for Ai, _, _ in data]
q_names = [q_name for q_name, _ in quantifiers()]
Madj = AdjMatrix('./data/matrice_adiacenza.csv')
tables = []
text_outputs = []
benchmarks = [f'te-{Ai}' for Ai in areas] # areas used as test
for aggr in ['median', 'mean']:
# areas on which a quantifier is trained, e.g., 'PACC-w/o46' means a PACC quantifier
# has been trained on all areas but 46
methods = [f'{q_name}-{aggr}' for q_name in q_names]
table = Table(name=f'adjacent{aggr}optim', benchmarks=benchmarks, methods=methods, stat_test=None, color_mode='local')
table.format.mean_prec = 4
table.format.show_std = False
table.format.sta = False
table.format.remove_zero = True
for q_name, q in quantifiers():
for i, (Ai, Xi, yi) in tqdm(enumerate(data), total=n_areas):
# compose members of the rule (quantifiers are optimized wrt the rest of the areas)
#training
other_area = [(Aj, Xj, yj) for Aj, Xj, yj in data if Aj != Ai]
area_quantifiers = optimize_ensemble(other_area, q, Madj)
rule = AggregationRule(area_quantifiers, adjacent_matrix=Madj, aggr=aggr)
#test
te = LabelledCollection(Xi, yi)
qp.environ["SAMPLE_SIZE"] = len(te)
pred_prev = rule.predict(Ai, te.X)
true_prev = te.prevalence()
err = qp.error.mae(true_prev, pred_prev)
method_name = f'{q_name}-{aggr}'
table.add(benchmark=f'te-{Ai}', method=method_name, v=err)
# text_outputs.append(f'{q_name} got mean {table.all_mean():.5f}, best mean {table.get_method_values("Best").mean():.5f}')
tables.append(table)
Table.LatexPDF(f'./results/adjacentaggregationoptim/doc.pdf', tables)
# with open(f'./results/classifier/output.txt', 'tw') as foo:
# foo.write('\n'.join(text_outputs))