forked from moreo/QuaPy
202 lines
7.6 KiB
Python
202 lines
7.6 KiB
Python
import numpy as np
|
|
from scipy.sparse import issparse
|
|
from scipy.sparse import vstack
|
|
from sklearn.model_selection import train_test_split
|
|
from quapy.functional import artificial_prevalence_sampling, strprev
|
|
|
|
|
|
class LabelledCollection:
|
|
|
|
def __init__(self, instances, labels, n_classes=None):
|
|
if issparse(instances):
|
|
self.instances = instances
|
|
elif isinstance(instances, list) and len(instances)>0 and isinstance(instances[0], str):
|
|
# lists of strings occupy too much as ndarrays (although python-objects add a heavy overload)
|
|
self.instances = np.asarray(instances, dtype=object)
|
|
else:
|
|
self.instances = np.asarray(instances)
|
|
self.labels = np.asarray(labels, dtype=int)
|
|
n_docs = len(self)
|
|
if n_classes is None:
|
|
self.classes_ = np.unique(self.labels)
|
|
self.classes_.sort()
|
|
else:
|
|
self.classes_ = np.arange(n_classes)
|
|
self.index = {class_i: np.arange(n_docs)[self.labels == class_i] for class_i in self.classes_}
|
|
|
|
@classmethod
|
|
def load(cls, path:str, loader_func:callable):
|
|
return LabelledCollection(*loader_func(path))
|
|
|
|
def __len__(self):
|
|
return self.instances.shape[0]
|
|
|
|
def prevalence(self):
|
|
return self.counts()/len(self)
|
|
|
|
def counts(self):
|
|
return np.asarray([len(self.index[ci]) for ci in self.classes_])
|
|
|
|
@property
|
|
def n_classes(self):
|
|
return len(self.classes_)
|
|
|
|
@property
|
|
def binary(self):
|
|
return self.n_classes == 2
|
|
|
|
def sampling_index(self, size, *prevs, shuffle=True):
|
|
if len(prevs) == 0: # no prevalence was indicated; returns an index for uniform sampling
|
|
return np.random.choice(len(self), size, replace=False)
|
|
if len(prevs) == self.n_classes-1:
|
|
prevs = prevs + (1-sum(prevs),)
|
|
assert len(prevs) == self.n_classes, 'unexpected number of prevalences'
|
|
assert sum(prevs) == 1, f'prevalences ({prevs}) wrong range (sum={sum(prevs)})'
|
|
|
|
taken = 0
|
|
indexes_sample = []
|
|
for i, class_i in enumerate(self.classes_):
|
|
if i == self.n_classes-1:
|
|
n_requested = size - taken
|
|
else:
|
|
n_requested = int(size * prevs[i])
|
|
|
|
n_candidates = len(self.index[class_i])
|
|
index_sample = self.index[class_i][
|
|
np.random.choice(n_candidates, size=n_requested, replace=(n_requested > n_candidates))
|
|
] if n_requested > 0 else []
|
|
|
|
indexes_sample.append(index_sample)
|
|
taken += n_requested
|
|
|
|
indexes_sample = np.concatenate(indexes_sample).astype(int)
|
|
|
|
if shuffle:
|
|
indexes_sample = np.random.permutation(indexes_sample)
|
|
|
|
return indexes_sample
|
|
|
|
# def uniform_sampling_index(self, size):
|
|
# return np.random.choice(len(self), size, replace=False)
|
|
|
|
# def uniform_sampling(self, size):
|
|
# unif_index = self.uniform_sampling_index(size)
|
|
# return self.sampling_from_index(unif_index)
|
|
|
|
def sampling(self, size, *prevs, shuffle=True):
|
|
prev_index = self.sampling_index(size, *prevs, shuffle=shuffle)
|
|
return self.sampling_from_index(prev_index)
|
|
|
|
def sampling_from_index(self, index):
|
|
documents = self.instances[index]
|
|
labels = self.labels[index]
|
|
return LabelledCollection(documents, labels, n_classes=self.n_classes)
|
|
|
|
def split_stratified(self, train_prop=0.6, random_state=None):
|
|
# with temp_seed(42):
|
|
tr_docs, te_docs, tr_labels, te_labels = \
|
|
train_test_split(self.instances, self.labels, train_size=train_prop, stratify=self.labels, random_state=random_state)
|
|
return LabelledCollection(tr_docs, tr_labels), LabelledCollection(te_docs, te_labels)
|
|
|
|
def artificial_sampling_generator(self, sample_size, n_prevalences=101, repeats=1):
|
|
dimensions=self.n_classes
|
|
for prevs in artificial_prevalence_sampling(dimensions, n_prevalences, repeats):
|
|
yield self.sampling(sample_size, *prevs)
|
|
|
|
def artificial_sampling_index_generator(self, sample_size, n_prevalences=101, repeats=1):
|
|
dimensions=self.n_classes
|
|
for prevs in artificial_prevalence_sampling(dimensions, n_prevalences, repeats):
|
|
yield self.sampling_index(sample_size, *prevs)
|
|
|
|
def natural_sampling_generator(self, sample_size, repeats=100):
|
|
for _ in range(repeats):
|
|
yield self.uniform_sampling(sample_size)
|
|
|
|
def natural_sampling_index_generator(self, sample_size, repeats=100):
|
|
for _ in range(repeats):
|
|
yield self.uniform_sampling_index(sample_size)
|
|
|
|
def __add__(self, other):
|
|
if issparse(self.instances) and issparse(other.instances):
|
|
join_instances = vstack([self.instances, other.instances])
|
|
elif isinstance(self.instances, list) and isinstance(other.instances, list):
|
|
join_instances = self.instances + other.instances
|
|
elif isinstance(self.instances, np.ndarray) and isinstance(other.instances, np.ndarray):
|
|
join_instances = np.concatenate([self.instances, other.instances])
|
|
else:
|
|
raise NotImplementedError('unsupported operation for collection types')
|
|
labels = np.concatenate([self.labels, other.labels])
|
|
return LabelledCollection(join_instances, labels)
|
|
|
|
@property
|
|
def Xy(self):
|
|
return self.instances, self.labels
|
|
|
|
def stats(self, show=True):
|
|
ninstances = len(self)
|
|
instance_type = type(self.instances[0])
|
|
if instance_type == list:
|
|
nfeats = len(self.instances[0])
|
|
elif instance_type == np.ndarray or issparse(self.instances):
|
|
nfeats = self.instances.shape[1]
|
|
else:
|
|
nfeats = '?'
|
|
stats_ = {'instances': ninstances,
|
|
'type': instance_type,
|
|
'features': nfeats,
|
|
'classes': self.n_classes,
|
|
'prevs': strprev(self.prevalence())}
|
|
if show:
|
|
print(f'#instances={stats_["instances"]}, type={stats_["type"]}, #features={stats_["features"]}, '
|
|
f'#classes={stats_["classes"]}, prevs={stats_["prevs"]}')
|
|
return stats_
|
|
|
|
|
|
class Dataset:
|
|
|
|
def __init__(self, training: LabelledCollection, test: LabelledCollection, vocabulary: dict = None, name=''):
|
|
assert training.n_classes == test.n_classes, 'incompatible labels in training and test collections'
|
|
self.training = training
|
|
self.test = test
|
|
self.vocabulary = vocabulary
|
|
self.name = name
|
|
|
|
@classmethod
|
|
def SplitStratified(cls, collection: LabelledCollection, train_size=0.6):
|
|
return Dataset(*collection.split_stratified(train_prop=train_size))
|
|
|
|
@property
|
|
def n_classes(self):
|
|
return self.training.n_classes
|
|
|
|
@property
|
|
def binary(self):
|
|
return self.training.binary
|
|
|
|
@classmethod
|
|
def load(cls, train_path, test_path, loader_func: callable):
|
|
training = LabelledCollection.load(train_path, loader_func)
|
|
test = LabelledCollection.load(test_path, loader_func)
|
|
return Dataset(training, test)
|
|
|
|
@property
|
|
def vocabulary_size(self):
|
|
return len(self.vocabulary)
|
|
|
|
def stats(self):
|
|
tr_stats = self.training.stats(show=False)
|
|
te_stats = self.test.stats(show=False)
|
|
print(f'Dataset={self.name} #tr-instances={tr_stats["instances"]}, #te-instances={te_stats["instances"]}, '
|
|
f'type={tr_stats["type"]}, #features={tr_stats["features"]}, #classes={tr_stats["classes"]}, '
|
|
f'tr-prevs={tr_stats["prevs"]}, te-prevs={te_stats["prevs"]}')
|
|
|
|
|
|
def isbinary(data):
|
|
if isinstance(data, Dataset) or isinstance(data, LabelledCollection):
|
|
return data.binary
|
|
return False
|
|
|
|
|
|
|
|
|