1
0
Fork 0
QuaPy/NewMethods/new_gen_tables.py

149 lines
5.5 KiB
Python

import quapy as qp
import numpy as np
from os import makedirs
import sys, os
import pickle
from experiments import result_path
from gen_tables import save_table, experiment_errors
from tabular import Table
import argparse
tables_path = './tables'
MAXTONE = 50 # sets the intensity of the maximum color reached by the worst (red) and best (green) results
makedirs(tables_path, exist_ok=True)
sample_size = 100
qp.environ['SAMPLE_SIZE'] = sample_size
nice = {
'mae':'AE',
'mrae':'RAE',
'ae':'AE',
'rae':'RAE',
'svmkld': 'SVM(KLD)',
'svmnkld': 'SVM(NKLD)',
'svmq': 'SVM(Q)',
'svmae': 'SVM(AE)',
'svmnae': 'SVM(NAE)',
'svmmae': 'SVM(AE)',
'svmmrae': 'SVM(RAE)',
'quanet': 'QuaNet',
'hdy': 'HDy',
'hdysld': 'HDy-SLD',
'dys': 'DyS',
'svmperf':'',
'sanders': 'Sanders',
'semeval13': 'SemEval13',
'semeval14': 'SemEval14',
'semeval15': 'SemEval15',
'semeval16': 'SemEval16',
'Average': 'Average'
}
def nicerm(key):
return '\mathrm{'+nice[key]+'}'
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Generate tables for Tweeter Sentiment Quantification')
parser.add_argument('results', metavar='RESULT_PATH', type=str,
help='path to the directory containing the results of the methods tested in Gao & Sebastiani')
parser.add_argument('newresults', metavar='RESULT_PATH', type=str,
help='path to the directory containing the results for the experimental methods')
args = parser.parse_args()
datasets = qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST
evaluation_measures = [qp.error.ae, qp.error.rae]
gao_seb_methods = ['cc', 'acc', 'pcc', 'pacc', 'sld', 'svmq', 'svmkld', 'svmnkld']
new_methods = ['hdy'] # methods added to the Gao & Sebastiani methods
experimental_methods = ['hdysld'] # experimental
for i, eval_func in enumerate(evaluation_measures):
# Tables evaluation scores for AE and RAE (two tables)
# ----------------------------------------------------
eval_name = eval_func.__name__
added_methods = ['svmm' + eval_name] + new_methods
methods = gao_seb_methods + added_methods + experimental_methods
nold_methods = len(gao_seb_methods)
nnew_methods = len(added_methods)
nexp_methods = len(experimental_methods)
# fill data table
table = Table(rows=datasets, cols=methods)
for dataset in datasets:
for method in methods:
if method in experimental_methods:
path = args.newresults
else:
path = args.results
table.add(dataset, method, experiment_errors(path, dataset, method, eval_name))
# write the latex table
tabular = """
\\begin{tabularx}{\\textwidth}{|c||""" + ('Y|'*nold_methods) + '|' + ('Y|'*nnew_methods) + '|' + ('Y|'*nexp_methods) + """} \hline
& \multicolumn{"""+str(nold_methods)+"""}{c||}{Methods tested in~\cite{Gao:2016uq}} &
\multicolumn{"""+str(nnew_methods)+"""}{c|}{} &
\multicolumn{"""+str(nexp_methods)+"""}{c|}{}\\\\ \hline
"""
rowreplace={dataset: nice.get(dataset, dataset.upper()) for dataset in datasets}
colreplace={method:'\side{' + nice.get(method, method.upper()) +'$^{' + nicerm(eval_name) + '}$} ' for method in methods}
tabular += table.latexTabular(rowreplace=rowreplace, colreplace=colreplace)
tabular += "\n\end{tabularx}"
save_table(f'./tables/tab_results_{eval_name}.new.tex', tabular)
# Tables ranks for AE and RAE (two tables)
# ----------------------------------------------------
# fill the data table
ranktable = Table(rows=datasets, cols=methods, missing='--')
for dataset in datasets:
for method in methods:
ranktable.add(dataset, method, values=table.get(dataset, method, 'rank'))
# write the latex table
tabular = """
\\begin{tabularx}{\\textwidth}{|c||""" + ('Y|'*nold_methods) + '|' + ('Y|'*nnew_methods) + '|' + ('Y|'*nexp_methods) + """} \hline
& \multicolumn{"""+str(nold_methods)+"""}{c||}{Methods tested in~\cite{Gao:2016uq}} &
\multicolumn{"""+str(nnew_methods)+"""}{c|}{} &
\multicolumn{"""+str(nexp_methods)+"""}{c|}{}\\\\ \hline
"""
for method in methods:
tabular += ' & \side{' + nice.get(method, method.upper()) +'$^{' + nicerm(eval_name) + '}$} '
tabular += '\\\\\hline\n'
for dataset in datasets:
tabular += nice.get(dataset, dataset.upper()) + ' '
for method in methods:
newrank = ranktable.get(dataset, method)
if newrank != '--':
newrank = f'{int(newrank)}'
color = ranktable.get_color(dataset, method)
if color == '--':
color = ''
tabular += ' & ' + f'{newrank}' + color
tabular += '\\\\\hline\n'
tabular += '\hline\n'
tabular += 'Average '
for method in methods:
newrank = ranktable.get_average(method)
if newrank != '--':
newrank = f'{newrank:.1f}'
color = ranktable.get_average(method, 'color')
if color == '--':
color = ''
tabular += ' & ' + f'{newrank}' + color
tabular += '\\\\\hline\n'
tabular += "\end{tabularx}"
save_table(f'./tables/tab_rank_{eval_name}.new.tex', tabular)
print("[Done]")