import gzip import os from collections import Counter from Ordinal.utils import jaggedness import pickle import numpy as np import pandas as pd nrows = 3 ncols = 4 prevalences = np.genfromtxt('fact_real_prevalences.csv', delimiter=',')[1:] #prevalences = prevalences[:nrows*ncols] print(prevalences) n = prevalences.shape[1] class_smooth = [] for i, sample in enumerate(prevalences): p = sample smooth = jaggedness(p) class_smooth.append([smooth, f'Sample {i+1}', p]) # these two lines pick the nrows*ncols examples that go from the less jagged to the most jagged # at equal steps class_smooth = sorted(class_smooth) class_smooth = class_smooth[::len(class_smooth)//(nrows*ncols)] class_smooth = class_smooth[:nrows*ncols] # print(class_smooth) # print(len(class_smooth)) import matplotlib.pyplot as plt import seaborn as sns sns.set_theme('paper') sns.set_style('dark') sns.set(font_scale=0.5) maxy = np.max(prevalences) + 0.1 class_labels = np.arange(1,n+1) figure, axis = plt.subplots(nrows, ncols, figsize=(ncols*2, nrows)) for i, (smooth, category, prevalence) in enumerate(class_smooth): row = i // ncols col = i % ncols # print(i, row, col) #axis[row, col].bar(list(range(1,n+1)), prevalence, width=1) axis[row, col].bar(class_labels, prevalence, width=1) axis[row, col].set_ylim(0, maxy) axis[row, col].set_facecolor('white') for spine in axis[row, col].spines.values(): spine.set_edgecolor('black') spine.set_linewidth(0.3) if row==nrows-1: axis[row, col].set_xlabel("energy bin") axis[row, col].set_xticks(class_labels) else: axis[row, col].set_xlabel("") axis[row, col].set_xticks([]) axis[row, col].set_ylabel("") axis[row, col].set_yticks([]) category = category.replace('_', ' ').title() category = category.replace(' And ', ' & ') axis[row, col].set_title(f'{category} ({smooth:.4f})', x=0.5, y=0.75) # axis[row, col].set_title print(smooth, category, prevalence) # plt.show() plt.subplots_adjust(wspace=0, hspace=0) plt.savefig('Telescope_sample_plotgrid.pdf', bbox_inches='tight')