from sklearn.linear_model import LogisticRegression from sklearn.svm import LinearSVC import quapy as qp import quapy.functional as F SAMPLE_SIZE=500 binary = False if binary: # load a textual binary dataset and create a tfidf bag of words train_path = './datasets/reviews/kindle/train.txt' test_path = './datasets/reviews/kindle/test.txt' dataset = qp.Dataset.load(train_path, test_path, qp.reader.from_text) qp.preprocessing.text2tfidf(dataset, inplace=True) qp.preprocessing.reduce_columns(dataset, min_df=10, inplace=True) else: # load a sparse matrix ternary dataset train_path = './datasets/twitter/train/sst.train+dev.feature.txt' test_path = './datasets/twitter/test/sst.test.feature.txt' dataset = qp.Dataset.load(train_path, test_path, qp.reader.from_sparse) # training a quantifier learner = LogisticRegression() model = qp.method.aggregative.ClassifyAndCount(learner) # model = qp.method.aggregative.AdjustedClassifyAndCount(learner) # model = qp.method.aggregative.AdjustedClassifyAndCount(learner) # model = qp.method.aggregative.ProbabilisticClassifyAndCount(learner) # model = qp.method.aggregative.ProbabilisticAdjustedClassifyAndCount(learner) # model = qp.method.aggregative.ExpectationMaximizationQuantifier(learner) model.fit(dataset.training) # estimating class prevalences prevalences_estim = model.quantify(dataset.test.instances) prevalences_true = dataset.test.prevalence() # evaluation (one single prediction) error = qp.error.mae(prevalences_true, prevalences_estim) print(f'method {model.__class__.__name__}') print(f'Evaluation in test (1 eval)') print(f'true prevalence {F.strprev(prevalences_true)}') print(f'estim prevalence {F.strprev(prevalences_estim)}') print(f'mae={error:.3f}') true_prev, estim_prev = qp.evaluation.artificial_sampling_prediction(model, dataset.test, SAMPLE_SIZE) qp.error.SAMPLE_SIZE=SAMPLE_SIZE print(f'Evaluation according to the artificial sampling protocol ({len(true_prev)} evals)') for error in qp.error.QUANTIFICATION_ERROR: score = error(true_prev, estim_prev) print(f'{error.__name__}={score:.5f}')