import argparse from sklearn.calibration import CalibratedClassifierCV from sklearn.linear_model import LogisticRegression import itertools from sklearn.multioutput import ClassifierChain from tqdm import tqdm from skmultilearn.dataset import load_dataset, available_data_sets from scipy.sparse import csr_matrix import quapy as qp from MultiLabel.main import load_results from MultiLabel.mlclassification import MultilabelStackedClassifier from MultiLabel.mldata import MultilabelledCollection from MultiLabel.mlquantification import MultilabelNaiveQuantifier, MLCC, MLPCC, MLRegressionQuantification, \ MLACC, \ MLPACC, MultilabelNaiveAggregativeQuantifier from MultiLabel.tabular import Table from method.aggregative import PACC, CC, EMQ, PCC, ACC, HDy import numpy as np from data.dataset import Dataset from mlevaluation import ml_natural_prevalence_prediction, ml_artificial_prevalence_prediction, check_error_str import sys import os import pickle models = ['NaiveCC', 'NaivePCC', 'NaiveACC', 'NaivePACC', 'NaiveHDy', 'NaiveSLD'] datasets = sorted(set([x[0] for x in available_data_sets().keys()])) def generate_table(path, protocol, error): print(f'generating {path}') table = Table(datasets, models) for dataset, model in itertools.product(datasets, models): result_path = f'{opt.results}/{dataset}_{model}.pkl' if os.path.exists(result_path): result = load_results(result_path) true_prevs, estim_prevs = result[protocol] scores = np.asarray([error(trues, estims) for trues, estims in zip(true_prevs, estim_prevs)]).flatten() table.add(dataset, model, scores) tabular = """ \\resizebox{\\textwidth}{!}{% \\begin{tabular}{|c||""" + ('c|' * len(models)) + """} \hline """ dataset_replace = {'tmc2007_500': 'tmc2007\_500'} method_replace = {} tabular += table.latexTabular(benchmark_replace=dataset_replace, method_replace=method_replace) tabular += """ \end{tabular}% } """ with open(path, 'wt') as foo: foo.write(tabular) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Experiments for multi-label quantification') parser.add_argument('--results', type=str, default='./results', metavar='str', help=f'path where to store the results') parser.add_argument('--tablepath', type=str, default='./tables', metavar='str', help=f'path where to store the tables') opt = parser.parse_args() os.makedirs(opt.results, exist_ok=True) os.makedirs(opt.tablepath, exist_ok=True) eval_error = qp.error.ae generate_table(f'{opt.tablepath}/npp.ae.tex', protocol='npp', error=eval_error) generate_table(f'{opt.tablepath}/app.ae.tex', protocol='app', error=eval_error)