import numpy as np from sklearn.linear_model import LogisticRegression import quapy as qp from data.datasets import LEQUA2022_SAMPLE_SIZE, fetch_lequa2022 from evaluation import evaluation_report from method.aggregative import EMQ from model_selection import GridSearchQ task = 'T1A' qp.environ['SAMPLE_SIZE']=LEQUA2022_SAMPLE_SIZE[task] training, val_generator, test_generator = fetch_lequa2022(task=task) # define the quantifier quantifier = EMQ(learner=LogisticRegression()) # model selection param_grid = {'C': np.logspace(-3, 3, 7), 'class_weight': ['balanced', None]} model_selection = GridSearchQ(quantifier, param_grid, protocol=val_generator, n_jobs=-1, refit=False, verbose=True) quantifier = model_selection.fit(training) # evaluation report = evaluation_report(quantifier, protocol=test_generator, error_metrics=['mae', 'mrae'], verbose=True) print(report)