from pathlib import Path import matplotlib.pyplot as plt from os import makedirs from os.path import join from ClassifierAccuracy.util.commons import get_method_names, open_results def plot_diagonal(basedir, cls_name, measure_name, dataset_name='*'): methods = get_method_names() results = open_results(basedir, cls_name, measure_name, dataset_name=dataset_name, method_name=methods) methods, xs, ys = [], [], [] for method_name in results.keys(): methods.append(method_name) xs.append(results[method_name]['true_acc']) ys.append(results[method_name]['estim_acc']) plotsubdir = 'all' if dataset_name=='*' else dataset_name save_path = join('plots', basedir, measure_name, plotsubdir, 'diagonal.png') _plot_diagonal(methods, xs, ys, save_path, measure_name) def _plot_diagonal(methods_names, true_xs, estim_ys, save_path, measure_name, title=None): makedirs(Path(save_path).parent, exist_ok=True) # Create scatter plot plt.figure(figsize=(10, 10)) plt.xlim(0, 1) plt.ylim(0, 1) plt.plot([0, 1], [0, 1], color='black', linestyle='--') for (method_name, xs, ys) in zip(methods_names, true_xs, estim_ys): plt.scatter(xs, ys, label=f'{method_name}', alpha=0.5, linewidths=0) plt.legend() # Add labels and title if title is not None: plt.title(title) plt.xlabel(f'True {measure_name}') plt.ylabel(f'Estimated {measure_name}') # Display the plot plt.savefig(save_path) plt.cla()