from sklearn.calibration import CalibratedClassifierCV from sklearn.linear_model import LogisticRegression from sklearn.multioutput import ClassifierChain from tqdm import tqdm from skmultilearn.dataset import load_dataset from scipy.sparse import csr_matrix import quapy as qp from MultiLabel.mlclassification import MultilabelStackedClassifier from MultiLabel.mldata import MultilabelledCollection from MultiLabel.mlquantification import MultilabelNaiveQuantifier, MLCC, MLPCC, MLRegressionQuantification, \ MLACC, \ MLPACC, MultilabelNaiveAggregativeQuantifier from method.aggregative import PACC, CC, EMQ, PCC, ACC, HDy import numpy as np from data.dataset import Dataset from mlevaluation import ml_natural_prevalence_evaluation, ml_artificial_prevalence_evaluation import sys def cls(): # return LinearSVC() return LogisticRegression(max_iter=1000, solver='lbfgs', n_jobs=-1) def calibratedCls(): return CalibratedClassifierCV(cls()) # DEBUG=True # if DEBUG: sample_size = 250 n_samples = 5000 def models(): yield 'NaiveCC', MultilabelNaiveAggregativeQuantifier(CC(cls())) yield 'NaivePCC', MultilabelNaiveAggregativeQuantifier(PCC(cls())) yield 'NaiveACC', MultilabelNaiveAggregativeQuantifier(ACC(cls())) yield 'NaivePACC', MultilabelNaiveAggregativeQuantifier(PACC(cls())) # yield 'EMQ', MultilabelQuantifier(EMQ(calibratedCls())) yield 'StackCC', MLCC(MultilabelStackedClassifier(cls())) yield 'StackPCC', MLPCC(MultilabelStackedClassifier(cls())) yield 'StackACC', MLACC(MultilabelStackedClassifier(cls())) yield 'StackPACC', MLPACC(MultilabelStackedClassifier(cls())) # yield 'ChainCC', MLCC(ClassifierChain(cls(), cv=None, order='random')) # yield 'ChainPCC', MLPCC(ClassifierChain(cls(), cv=None, order='random')) # yield 'ChainACC', MLACC(ClassifierChain(cls(), cv=None, order='random')) # yield 'ChainPACC', MLPACC(ClassifierChain(cls(), cv=None, order='random')) common={'sample_size':sample_size, 'n_samples': n_samples, 'norm': True, 'means':False, 'stds':False, 'regression':'svr'} yield 'MRQ-CC', MLRegressionQuantification(MultilabelNaiveQuantifier(CC(cls())), **common) yield 'MRQ-PCC', MLRegressionQuantification(MultilabelNaiveQuantifier(PCC(cls())), **common) yield 'MRQ-ACC', MLRegressionQuantification(MultilabelNaiveQuantifier(ACC(cls())), **common) yield 'MRQ-PACC', MLRegressionQuantification(MultilabelNaiveQuantifier(PACC(cls())), **common) yield 'MRQ-StackCC', MLRegressionQuantification(MLCC(MultilabelStackedClassifier(cls())), **common) yield 'MRQ-StackPCC', MLRegressionQuantification(MLPCC(MultilabelStackedClassifier(cls())), **common) yield 'MRQ-StackACC', MLRegressionQuantification(MLACC(MultilabelStackedClassifier(cls())), **common) yield 'MRQ-StackPACC', MLRegressionQuantification(MLPACC(MultilabelStackedClassifier(cls())), **common) yield 'MRQ-StackCC-app', MLRegressionQuantification(MLCC(MultilabelStackedClassifier(cls())), protocol='app', **common) yield 'MRQ-StackPCC-app', MLRegressionQuantification(MLPCC(MultilabelStackedClassifier(cls())), protocol='app', **common) yield 'MRQ-StackACC-app', MLRegressionQuantification(MLACC(MultilabelStackedClassifier(cls())), protocol='app', **common) yield 'MRQ-StackPACC-app', MLRegressionQuantification(MLPACC(MultilabelStackedClassifier(cls())), protocol='app', **common) # yield 'MRQ-ChainCC', MLRegressionQuantification(MLCC(ClassifierChain(cls())), **common) # yield 'MRQ-ChainPCC', MLRegressionQuantification(MLPCC(ClassifierChain(cls())), **common) # yield 'MRQ-ChainACC', MLRegressionQuantification(MLACC(ClassifierChain(cls())), **common) # yield 'MRQ-ChainPACC', MLRegressionQuantification(MLPACC(ClassifierChain(cls())), **common) # dataset = 'reuters21578' # picklepath = '/home/moreo/word-class-embeddings/pickles' # data = Dataset.load(dataset, pickle_path=f'{picklepath}/{dataset}.pickle') # Xtr, Xte = data.vectorize() # ytr = data.devel_labelmatrix.todense().getA() # yte = data.test_labelmatrix.todense().getA() # remove categories with < 10 training documents # to_keep = np.logical_and(ytr.sum(axis=0)>=50, yte.sum(axis=0)>=50) # ytr = ytr[:, to_keep] # yte = yte[:, to_keep] # print(f'num categories = {ytr.shape[1]}') dataset = 'birds' Xtr, ytr, feature_names, label_names = load_dataset(dataset, 'train') Xte, yte, _, _ = load_dataset(dataset, 'test') print(f'n-labels = {len(label_names)}') Xtr = csr_matrix(Xtr) Xte = csr_matrix(Xte) ytr = ytr.todense().getA() yte = yte.todense().getA() # print((np.abs(np.corrcoef(ytr, rowvar=False))>0.1).sum()) # sys.exit(0) train = MultilabelledCollection(Xtr, ytr) test = MultilabelledCollection(Xte, yte) # print(f'Train-prev: {train.prevalence()[:,1]}') print(f'Train-counts: {train.counts()}') # print(f'Test-prev: {test.prevalence()[:,1]}') print(f'Test-counts: {test.counts()}') print(f'MLPE: {qp.error.mae(train.prevalence(), test.prevalence()):.5f}') fit_models = {model_name:model.fit(train) for model_name,model in tqdm(models(), 'fitting', total=6)} print('NPP:') for model_name, model in fit_models.items(): err = ml_natural_prevalence_evaluation(model, test, sample_size, repeats=100) print(f'{model_name:10s}\tmae={err:.5f}') print('APP:') for model_name, model in fit_models.items(): err = ml_artificial_prevalence_evaluation(model, test, sample_size, n_prevalences=21, repeats=10) print(f'{model_name:10s}\tmae={err:.5f}')