Welcome to QuaPy’s documentation!
QuaPy is a Python-based open-source framework for quantification.
This document contains the API of the modules included in QuaPy.
Installation
pip install quapy
GitHub
QuaPy is hosted in GitHub at https://github.com/HLT-ISTI/QuaPy
Contents
- quapy
- quapy package
- Subpackages
- quapy.classification package
- Submodules
- quapy.classification.calibration module
BCTSCalibration
NBVSCalibration
RecalibratedProbabilisticClassifier
RecalibratedProbabilisticClassifierBase
RecalibratedProbabilisticClassifierBase.classes_
RecalibratedProbabilisticClassifierBase.fit()
RecalibratedProbabilisticClassifierBase.fit_cv()
RecalibratedProbabilisticClassifierBase.fit_tr_val()
RecalibratedProbabilisticClassifierBase.predict()
RecalibratedProbabilisticClassifierBase.predict_proba()
TSCalibration
VSCalibration
- quapy.classification.methods module
- quapy.classification.neural module
- quapy.classification.svmperf module
- Module contents
- quapy.data package
- Submodules
- quapy.data.base module
Dataset
LabelledCollection
LabelledCollection.X
LabelledCollection.Xp
LabelledCollection.Xy
LabelledCollection.binary
LabelledCollection.counts()
LabelledCollection.join()
LabelledCollection.kFCV()
LabelledCollection.load()
LabelledCollection.n_classes
LabelledCollection.p
LabelledCollection.prevalence()
LabelledCollection.sampling()
LabelledCollection.sampling_from_index()
LabelledCollection.sampling_index()
LabelledCollection.split_random()
LabelledCollection.split_stratified()
LabelledCollection.stats()
LabelledCollection.uniform_sampling()
LabelledCollection.uniform_sampling_index()
LabelledCollection.y
- quapy.data.datasets module
- quapy.data.preprocessing module
- quapy.data.reader module
- Module contents
- quapy.method package
- Submodules
- quapy.method.aggregative module
ACC
AdjustedClassifyAndCount
AggregativeCrispQuantifier
AggregativeMedianEstimator
AggregativeQuantifier
AggregativeQuantifier.aggregate()
AggregativeQuantifier.aggregation_fit()
AggregativeQuantifier.classes_
AggregativeQuantifier.classifier
AggregativeQuantifier.classifier_fit_predict()
AggregativeQuantifier.classify()
AggregativeQuantifier.fit()
AggregativeQuantifier.quantify()
AggregativeQuantifier.val_split
AggregativeQuantifier.val_split_
AggregativeSoftQuantifier
BinaryAggregativeQuantifier
CC
ClassifyAndCount
DMy
DistributionMatchingY
DyS
EMQ
ExpectationMaximizationQuantifier
HDy
HellingerDistanceY
OneVsAllAggregative
PACC
PCC
ProbabilisticAdjustedClassifyAndCount
ProbabilisticClassifyAndCount
SLD
SMM
newELM()
newSVMAE()
newSVMKLD()
newSVMQ()
newSVMRAE()
KDEBase
KDEyCS
KDEyHD
KDEyML
QuaNetModule
QuaNetTrainer
mae_loss()
MAX
MS
MS2
T50
ThresholdOptimization
X
- quapy.method.base module
- quapy.method.meta module
- quapy.method.non_aggregative module
- Module contents
- quapy.classification package
- Submodules
- quapy.error module
absolute_error()
acc_error()
acce()
ae()
f1_error()
f1e()
from_name()
kld()
mae()
mean_absolute_error()
mean_normalized_absolute_error()
mean_normalized_relative_absolute_error()
mean_relative_absolute_error()
mkld()
mnae()
mnkld()
mnrae()
mrae()
mse()
nae()
nkld()
normalized_absolute_error()
normalized_relative_absolute_error()
nrae()
rae()
relative_absolute_error()
se()
smooth()
- quapy.evaluation module
- quapy.functional module
HellingerDistance()
TopsoeDistance()
adjusted_quantification()
argmin_prevalence()
as_binary_prevalence()
check_prevalence_vector()
get_divergence()
get_nprevpoints_approximation()
linear_search()
normalize_prevalence()
num_prevalence_combinations()
optim_minimize()
prevalence_from_labels()
prevalence_from_probabilities()
prevalence_linspace()
strprev()
uniform_prevalence_sampling()
uniform_simplex_sampling()
- quapy.model_selection module
- quapy.plot module
- quapy.protocol module
- quapy.util module
- Module contents
- Subpackages
- quapy package