Change Log 0.1.7
----------------

- Protocols are now abstracted as instances of AbstractProtocol. There is a new class extending AbstractProtocol called
    AbstractStochasticSeededProtocol, which implements a seeding policy to allow replicate the series of samplings.
    There are some examples of protocols, APP, NPP, UPP, DomainMixer (experimental).
    The idea is to start the sample generation by simply calling the __call__ method.
    This change has a great impact in the framework, since many functions in qp.evaluation, qp.model_selection,
    and sampling functions in LabelledCollection relied of the old functions. E.g., the functionality of
    qp.evaluation.artificial_prevalence_report or qp.evaluation.natural_prevalence_report is now obtained by means of
    qp.evaluation.report which takes a protocol as an argument. I have not maintained compatibility with the old
    interfaces because I did not really like them. Check the wiki guide and the examples for more details.

- Exploration of hyperparameters in Model selection can now be run in parallel (there was a n_jobs argument in
    QuaPy 0.1.6 but only the evaluation part for one specific hyperparameter was run in parallel).

- The prediction function has been refactored, so it applies the optimization for aggregative quantifiers (that
    consists in pre-classifying all instances, and then only invoking aggregate on the samples) only in cases in
    which the total number of classifications would be smaller than the number of classifications with the standard
    procedure. The user can now specify "force", "auto", True of False, in order to actively decide for applying it
    or not.

- examples directory created!

- DyS, Topsoe distance and binary search (thanks to Pablo González)

- Multi-thread reproducibility via seeding (thanks to Pablo González)

- n_jobs is now taken from the environment if set to None

- ACC, PACC, Forman's threshold variants have been parallelized.

- cross_val_predict (for quantification) added to model_selection: would be nice to allow the user specifies a
    test protocol maybe, or None for bypassing it?

- Bugfix: adding two labelled collections (with +) now checks for consistency in the classes

- newer versions of numpy raise a warning when accessing types (e.g., np.float). I have replaced all such instances
    with the plain python type (e.g., float).

- new dependency "abstention" (to add to the project requirements and setup). Calibration methods from
    https://github.com/kundajelab/abstention added.

- the internal classifier of aggregative methods is now called "classifier" instead of "learner"

- when optimizing the hyperparameters of an aggregative quantifier, the classifier's specific hyperparameters
    should be marked with a "classifier__" prefix (just like in scikit-learn with estimators), while the quantifier's
    specific hyperparameters are named directly. For example, PCC(LogisticRegression()) quantifier has hyperparameters
    "classifier__C", "classifier__class_weight", etc., instead of "C" and "class_weight" as in v0.1.6.

- hyperparameters yielding to inconsistent runs raise a ValueError exception, while hyperparameter combinations
    yielding to internal errors of surrogate functions are reported and skipped, without stopping the grid search.

- DistributionMatching methods added. This is a general framework for distribution matching methods that catters for
    multiclass quantification. That is to say, one could get a multiclass variant of the (originally binary) HDy
    method aligned with the Firat's formulation.

- internal method properties "binary", "aggregative", and "probabilistic" have been removed; these conditions are
    checked via isinstance

- quantifiers (i.e., classes that inherit from BaseQuantifier) are not forced to implement classes_ or n_classes;
    these can be used anyway internally, but the framework will not suppose (nor impose) that a quantifier implements
    them

- qp.evaluation.prediction has been optimized so that, if a quantifier is of type aggregative, and if the evaluation
    protocol is of type OnLabelledCollection, then the computation is faster. In this specific case, the predictions
    are issued only once and for all, and not for each sample. An exception to this (which is implement also), is
    when the number of instances across all samples is anyway smaller than the number of instances in the original
    labelled collection; in this case the heuristic is of no help, and is therefore not applied.

- the distinction between "classify" and "posterior_probabilities" has been removed in Aggregative quantifiers,
    so that probabilistic classifiers return posterior probabilities, while non-probabilistic quantifiers
    return crisp decisions.

- OneVsAll fixed. There are now two classes: a generic one OneVsAllGeneric that works with any quantifier (e.g.,
    any instance of BaseQuantifier), and a subclass of it called OneVsAllAggregative which implements the
    classify / aggregate interface. Both are instances of OneVsAll. There is a method getOneVsAll that returns the
    best instance based on the type of quantifier.