import pickle import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from tqdm import tqdm import quapy as qp from quapy.data import LabelledCollection from quapy.method.aggregative import * from data import load_multiclass_raw_document import os path_multiclass_raw = 'multiclass_raw' result_path = os.path.join('results', 'multiclass_raw') os.makedirs(result_path, exist_ok=True) train_file = os.path.join(path_multiclass_raw, 'documents', 'training.txt') train = LabelledCollection.load(train_file, load_multiclass_raw_document) print('classes', train.classes_) print('#classes', len(train.classes_)) print('#docs', len(train)) print('prevalence', train.prevalence()) print('counts', train.counts()) tfidf = TfidfVectorizer(min_df=5) train.instances = tfidf.fit_transform(train.instances) print(train.instances.shape[1]) scores = {} for quantifier in [CC, ACC, PCC, PACC, EMQ]:#, HDy]: classifier = CalibratedClassifierCV(LogisticRegression()) # classifier = LogisticRegression() model = quantifier(classifier).fit(train) print('model trained') quantifier_name = model.__class__.__name__ scores[quantifier_name]={} for sample_set, sample_size in [('validation', 1000), ('test', 5000)]: ae_errors, rae_errors = [], [] for i in tqdm(range(sample_size), total=sample_size, desc=f'testing {quantifier_name} in {sample_set}'): test_file = os.path.join(path_multiclass_raw, 'documents', f'{sample_set}_{i}.txt') test = LabelledCollection.load(test_file, load_multiclass_raw_document, classes=train.classes_) test.instances = tfidf.transform(test.instances) qp.environ['SAMPLE_SIZE'] = len(test) prev_estim = model.quantify(test.instances) prev_true = test.prevalence() ae_errors.append(qp.error.mae(prev_true, prev_estim)) rae_errors.append(qp.error.mrae(prev_true, prev_estim)) ae_errors = np.asarray(ae_errors) rae_errors = np.asarray(rae_errors) mae = ae_errors.mean() mrae = rae_errors.mean() scores[quantifier_name][sample_set] = {'mae': mae, 'mrae': mrae} pickle.dump(ae_errors, open(os.path.join(result_path, f'{quantifier_name}.{sample_set}.ae.pickle'), 'wb'), pickle.HIGHEST_PROTOCOL) pickle.dump(rae_errors, open(os.path.join(result_path, f'{quantifier_name}.{sample_set}.rae.pickle'), 'wb'), pickle.HIGHEST_PROTOCOL) print(f'{quantifier_name} {sample_set} MAE={mae:.4f}') print(f'{quantifier_name} {sample_set} MRAE={mrae:.4f}') for model in scores: for sample_set in ['validation', 'test']: print(f'{model}\t{sample_set}\t{scores[model][sample_set]["mae"]:.4f}\t{scores[model][sample_set]["mrae"]:.4f}') """ test: validation """