import numpy as np from scipy.sparse import dok_matrix from tqdm import tqdm def from_text(path): """ Reas a labelled colletion of documents. File fomart <0 or 1>\t<document>\n :param path: path to the labelled collection :return: a list of sentences, and a list of labels """ all_sentences, all_labels = [], [] for line in tqdm(open(path, 'rt').readlines(), f'loading {path}'): line = line.strip() if line: label, sentence = line.split('\t') sentence = sentence.strip() label = int(label) if sentence: all_sentences.append(sentence) all_labels.append(label) return all_sentences, all_labels def from_sparse(path): """ Reas a labelled colletion of real-valued instances expressed in sparse format File fomart <-1 or 0 or 1>[\s col(int):val(float)]\n :param path: path to the labelled collection :return: a csr_matrix containing the instances (rows), and a ndarray containing the labels """ def split_col_val(col_val): col, val = col_val.split(':') col, val = int(col) - 1, float(val) return col, val all_documents, all_labels = [], [] max_col = 0 for line in tqdm(open(path, 'rt').readlines(), f'loading {path}'): parts = line.strip().split() if parts: all_labels.append(int(parts[0])) cols, vals = zip(*[split_col_val(col_val) for col_val in parts[1:]]) cols, vals = np.asarray(cols), np.asarray(vals) max_col = max(max_col, cols.max()) all_documents.append((cols, vals)) n_docs = len(all_labels) X = dok_matrix((n_docs, max_col + 1), dtype=float) for i, (cols, vals) in tqdm(enumerate(all_documents), total=len(all_documents), desc=f'\-- filling matrix of shape {X.shape}'): X[i, cols] = vals X = X.tocsr() y = np.asarray(all_labels) + 1 return X, y def from_csv(path): """ Reas a csv file in which columns are separated by ','. File fomart <label>,<feat1>,<feat2>,...,<featn>\n :param path: path to the csv file :return: a ndarray for the labels and a ndarray (float) for the covariates """ X, y = [], [] for instance in tqdm(open(path, 'rt').readlines(), desc=f'reading {path}'): yi, *xi = instance.strip().split(',') X.append(list(map(float,xi))) y.append(yi) X = np.asarray(X) y = np.asarray(y) return X, y def reindex_labels(y): """ Re-indexes a list of labels as a list of indexes, and returns the classnames corresponding to the indexes. E.g., y=['B', 'B', 'A', 'C'] -> [1,1,0,2], ['A','B','C'] :param y: the list or array of original labels :return: a ndarray (int) of class indexes, and a ndarray of classnames corresponding to the indexes. """ classnames = sorted(np.unique(y)) label2index = {label: index for index, label in enumerate(classnames)} indexed = np.empty(y.shape, dtype=np.int) for label in classnames: indexed[y==label] = label2index[label] return indexed, classnames def binarize(y, pos_class): y = np.asarray(y) ybin = np.zeros(y.shape, dtype=np.int) ybin[y == pos_class] = 1 return ybin