from sklearn.calibration import CalibratedClassifierCV from sklearn.svm import LinearSVC from fgsld.fgsld_quantifiers import FakeFGLSD from method.aggregative import EMQ, CC import quapy as qp qp.environ['SAMPLE_SIZE'] = 500 dataset = qp.datasets.fetch_reviews('kindle') qp.data.preprocessing.text2tfidf(dataset, min_df=5, inplace=True) training = dataset.training test = dataset.test cls = CalibratedClassifierCV(LinearSVC()) method_names, true_prevs, estim_prevs, tr_prevs = [], [], [], [] for model, model_name in [ (CC(cls), 'CC'), # (FakeFGLSD(cls, nbins=5, isomerous=False, recompute_bins=False), 'FGSLD-isometric-stat-5'), (FakeFGLSD(cls, nbins=5, isomerous=True, recompute_bins=True), 'FGSLD-isometric-dyn-5'), # (FakeFGLSD(cls, nbins=5, isomerous=True, recompute_bins=False), 'FGSLD-isomerous-stat-5'), # (FakeFGLSD(cls, nbins=10, isomerous=True, recompute_bins=True), 'FGSLD-isomerous-dyn-10'), #(FakeFGLSD(cls, nbins=5, isomerous=False), 'FGSLD-5'), #(FakeFGLSD(cls, nbins=10, isomerous=False), 'FGSLD-10'), #(FakeFGLSD(cls, nbins=50, isomerous=False), 'FGSLD-50'), #(FakeFGLSD(cls, nbins=100, isomerous=False), 'FGSLD-100'), # (FakeFGLSD(cls, nbins=1, isomerous=False), 'FGSLD-1'), #(FakeFGLSD(cls, nbins=10, isomerous=True), 'FGSLD-10-ISO'), # (FakeFGLSD(cls, nbins=50, isomerous=False), 'FGSLD-50'), (EMQ(cls), 'SLD'), ]: print('running ', model_name) model.fit(training) true_prev, estim_prev = qp.evaluation.artificial_sampling_prediction( model, test, qp.environ['SAMPLE_SIZE'], n_repetitions=5, n_prevpoints=11, n_jobs=-1 ) method_names.append(model_name) true_prevs.append(true_prev) estim_prevs.append(estim_prev) tr_prevs.append(training.prevalence()) qp.plot.binary_diagonal(method_names, true_prevs, estim_prevs, train_prev=tr_prevs[0], savepath='./plot_fglsd.png')