import itertools import json import os from collections import defaultdict from glob import glob from pathlib import Path from time import time import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import accuracy_score, f1_score from sklearn.datasets import fetch_rcv1, fetch_20newsgroups from sklearn.model_selection import GridSearchCV from ClassifierAccuracy.models_multiclass import * from ClassifierAccuracy.util.tabular import Table from quapy.method.aggregative import EMQ, ACC, KDEyML from quapy.data import LabelledCollection from quapy.data.datasets import fetch_UCIMulticlassLabelledCollection, UCI_MULTICLASS_DATASETS, fetch_lequa2022, TWITTER_SENTIMENT_DATASETS_TEST from quapy.data.datasets import fetch_reviews def gen_classifiers(): param_grid = { 'C': np.logspace(-4, -4, 9), 'class_weight': ['balanced', None] } yield 'LR', LogisticRegression() #yield 'LR-opt', GridSearchCV(LogisticRegression(), param_grid, cv=5, n_jobs=-1) #yield 'NB', GaussianNB() #yield 'SVM(rbf)', SVC() #yield 'SVM(linear)', LinearSVC() def gen_multi_datasets(only_names=False)-> [str,[LabelledCollection,LabelledCollection,LabelledCollection]]: for dataset_name in UCI_MULTICLASS_DATASETS: if dataset_name == 'wine-quality': continue if only_names: yield dataset_name, None else: dataset = fetch_UCIMulticlassLabelledCollection(dataset_name) yield dataset_name, split(dataset) # yields the 20 newsgroups dataset if only_names: yield "20news", None else: train = fetch_20newsgroups(subset='train', remove=('headers', 'footers', 'quotes')) test = fetch_20newsgroups(subset='test', remove=('headers', 'footers', 'quotes')) tfidf = TfidfVectorizer(min_df=5, sublinear_tf=True) Xtr = tfidf.fit_transform(train.data) Xte = tfidf.transform((test.data)) train = LabelledCollection(instances=Xtr, labels=train.target) U = LabelledCollection(instances=Xte, labels=test.target) T, V = train.split_stratified(train_prop=0.5, random_state=0) yield "20news", (T, V, U) # yields the T1B@LeQua2022 (training) dataset if only_names: yield "T1B-LeQua2022", None else: train, _, _ = fetch_lequa2022(task='T1B') yield "T1B-LeQua2022", split(train) def gen_tweet_datasets(only_names=False)-> [str,[LabelledCollection,LabelledCollection,LabelledCollection]]: for dataset_name in TWITTER_SENTIMENT_DATASETS_TEST: if only_names: yield dataset_name, None else: data = qp.datasets.fetch_twitter(dataset_name, min_df=3, pickle=True) T, V = data.training.split_stratified(0.5, random_state=0) U = data.test yield dataset_name, (T, V, U) def gen_bin_datasets(only_names=False) -> [str,[LabelledCollection,LabelledCollection,LabelledCollection]]: if only_names: for dataset_name in ['imdb', 'CCAT', 'GCAT', 'MCAT']: yield dataset_name, None else: train, U = fetch_reviews('imdb', tfidf=True, min_df=10, pickle=True).train_test L, V = train.split_stratified(0.5, random_state=0) yield 'imdb', (L, V, U) training = fetch_rcv1(subset='train') test = fetch_rcv1(subset='test') class_names = training.target_names.tolist() for cat in ['CCAT', 'GCAT', 'MCAT']: class_idx = class_names.index(cat) tr_labels = training.target[:,class_idx].toarray().flatten() te_labels = test.target[:,class_idx].toarray().flatten() tr = LabelledCollection(training.data, tr_labels) U = LabelledCollection(test.data, te_labels) L, V = tr.split_stratified(train_prop=0.5, random_state=0) yield cat, (L, V, U) def gen_CAP(h, acc_fn, with_oracle=False)->[str, ClassifierAccuracyPrediction]: #yield 'SebCAP', SebastianiCAP(h, acc_fn, ACC) yield 'SebCAP-SLD', SebastianiCAP(h, acc_fn, EMQ, predict_train_prev=not with_oracle) #yield 'SebCAP-KDE', SebastianiCAP(h, acc_fn, KDEyML) #yield 'SebCAPweight', SebastianiCAP(h, acc_fn, ACC, alpha=0) #yield 'PabCAP', PabloCAP(h, acc_fn, ACC) yield 'PabCAP-SLD-median', PabloCAP(h, acc_fn, EMQ, aggr='median') yield 'ATC-MC', ATC(h, acc_fn, scoring_fn='maxconf') # yield 'ATC-NE', ATC(h, acc_fn, scoring_fn='neg_entropy') yield 'DoC', DoC(h, acc_fn, sample_size=qp.environ['SAMPLE_SIZE']) def gen_CAP_cont_table(h)->[str,CAPContingencyTable]: acc_fn = None yield 'Naive', NaiveCAP(h, acc_fn) yield 'CT-PPS-EMQ', ContTableTransferCAP(h, acc_fn, EMQ(LogisticRegression())) # yield 'CT-PPS-KDE', ContTableTransferCAP(h, acc_fn, KDEyML(LogisticRegression(class_weight='balanced'), bandwidth=0.01)) yield 'CT-PPS-KDE05', ContTableTransferCAP(h, acc_fn, KDEyML(LogisticRegression(class_weight='balanced'), bandwidth=0.05)) #yield 'QuAcc(EMQ)nxn-noX', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()), add_posteriors=True, add_X=False) #yield 'QuAcc(EMQ)nxn', QuAccNxN(h, acc_fn, EMQ(LogisticRegression())) #yield 'QuAcc(EMQ)nxn-MC', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()), add_maxconf=True) # yield 'QuAcc(EMQ)nxn-NE', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()), add_negentropy=True) #yield 'QuAcc(EMQ)nxn-MIS', QuAccNxN(h, acc_fn, EMQ(LogisticRegression()), add_maxinfsoft=True) #yield 'QuAcc(EMQ)1xn2', QuAcc1xN2(h, acc_fn, EMQ(LogisticRegression())) #yield 'QuAcc(EMQ)1xn2', QuAcc1xN2(h, acc_fn, EMQ(LogisticRegression())) #yield 'CT-PPSh-EMQ', ContTableTransferCAP(h, acc_fn, EMQ(LogisticRegression()), reuse_h=True) #yield 'Equations-ACCh', NsquaredEquationsCAP(h, acc_fn, ACC, reuse_h=True) # yield 'Equations-ACC', NsquaredEquationsCAP(h, acc_fn, ACC) #yield 'Equations-SLD', NsquaredEquationsCAP(h, acc_fn, EMQ) def get_method_names(): mock_h = LogisticRegression() return [m for m, _ in gen_CAP(mock_h, None)] + [m for m, _ in gen_CAP_cont_table(mock_h)] def gen_acc_measure(): yield 'vanilla_accuracy', vanilla_acc_fn yield 'macro-F1', macrof1_fn def split(data: LabelledCollection): train_val, test = data.split_stratified(train_prop=0.66, random_state=0) train, val = train_val.split_stratified(train_prop=0.5, random_state=0) return train, val, test def fit_method(method, V): tinit = time() method.fit(V) t_train = time() - tinit return method, t_train def predictionsCAP(method, test_prot, oracle=False): tinit = time() if not oracle: estim_accs = [method.predict(Ui.X) for Ui in test_prot()] else: estim_accs = [method.predict(Ui.X, oracle_prev=Ui.prevalence()) for Ui in test_prot()] t_test_ave = (time() - tinit) / test_prot.total() return estim_accs, t_test_ave def predictionsCAPcont_table(method, test_prot, gen_acc_measure, oracle=False): estim_accs_dict = {} tinit = time() if not oracle: estim_tables = [method.predict_ct(Ui.X) for Ui in test_prot()] else: estim_tables = [method.predict_ct(Ui.X, oracle_prev=Ui.prevalence()) for Ui in test_prot()] for acc_name, acc_fn in gen_acc_measure(): estim_accs_dict[acc_name] = [acc_fn(cont_table) for cont_table in estim_tables] t_test_ave = (time() - tinit) / test_prot.total() return estim_accs_dict, t_test_ave def any_missing(basedir, cls_name, dataset_name, method_name): for acc_name, _ in gen_acc_measure(): if not os.path.exists(getpath(basedir, cls_name, acc_name, dataset_name, method_name)): return True return False def true_acc(h:BaseEstimator, acc_fn: callable, U: LabelledCollection): y_pred = h.predict(U.X) y_true = U.y conf_table = confusion_matrix(y_true, y_pred=y_pred, labels=U.classes_) return acc_fn(conf_table) def from_contingency_table(param1, param2): if param2 is None and isinstance(param1, np.ndarray) and param1.ndim==2 and (param1.shape[0]==param1.shape[1]): return True elif isinstance(param1, np.ndarray) and isinstance(param2, np.ndarray) and param1.shape==param2.shape: return False else: raise ValueError('parameters for evaluation function not understood') def vanilla_acc_fn(param1, param2=None): if from_contingency_table(param1, param2): return _vanilla_acc_from_ct(param1) else: return accuracy_score(param1, param2) def macrof1_fn(param1, param2=None): if from_contingency_table(param1, param2): return macro_f1_from_ct(param1) else: return f1_score(param1, param2, average='macro') def _vanilla_acc_from_ct(cont_table): return np.diag(cont_table).sum() / cont_table.sum() def _f1_bin(tp, fp, fn): if tp + fp + fn == 0: return 1 else: return (2 * tp) / (2 * tp + fp + fn) def macro_f1_from_ct(cont_table): n = cont_table.shape[0] if n==2: tp = cont_table[1,1] fp = cont_table[0,1] fn = cont_table[1,0] return _f1_bin(tp, fp, fn) f1_per_class = [] for i in range(n): tp = cont_table[i,i] fp = cont_table[:,i].sum() - tp fn = cont_table[i,:].sum() - tp f1_per_class.append(_f1_bin(tp, fp, fn)) return np.mean(f1_per_class) def microf1(cont_table): n = cont_table.shape[0] if n == 2: tp = cont_table[1, 1] fp = cont_table[0, 1] fn = cont_table[1, 0] return _f1_bin(tp, fp, fn) tp, fp, fn = 0, 0, 0 for i in range(n): tp += cont_table[i, i] fp += cont_table[:, i] - tp fn += cont_table[i, :] - tp return _f1_bin(tp, fp, fn) def cap_errors(true_acc, estim_acc): true_acc = np.asarray(true_acc) estim_acc = np.asarray(estim_acc) #return (true_acc - estim_acc)**2 return np.abs(true_acc - estim_acc) def getpath(basedir, cls_name, acc_name, dataset_name, method_name): return f"results/{basedir}/{cls_name}/{acc_name}/{dataset_name}/{method_name}.json" def open_results(basedir, cls_name, acc_name, dataset_name='*', method_name='*'): results = defaultdict(lambda : {'true_acc':[], 'estim_acc':[]}) if isinstance(method_name, str): method_name = [method_name] if isinstance(dataset_name, str): dataset_name = [dataset_name] for dataset_, method_ in itertools.product(dataset_name, method_name): path = getpath(basedir, cls_name, acc_name, dataset_, method_) for file in glob(path): #print(file) method = Path(file).name.replace('.json','') result = json.load(open(file, 'r')) results[method]['true_acc'].extend(result['true_acc']) results[method]['estim_acc'].extend(result['estim_acc']) return results def save_json_file(path, data): os.makedirs(Path(path).parent, exist_ok=True) with open(path, 'w') as f: json.dump(data, f) def save_json_result(path, true_accs, estim_accs, t_train, t_test): result = { 't_train': t_train, 't_test_ave': t_test, 'true_acc': true_accs, 'estim_acc': estim_accs } save_json_file(path, result) def get_dataset_stats(path, test_prot, L, V): test_prevs = [Ui.prevalence() for Ui in test_prot()] shifts = [qp.error.ae(L.prevalence(), Ui_prev) for Ui_prev in test_prevs] info = { 'n_classes': L.n_classes, 'n_train': len(L), 'n_val': len(V), 'train_prev': L.prevalence().tolist(), 'val_prev': V.prevalence().tolist(), 'test_prevs': [x.tolist() for x in test_prevs], 'shifts': [x.tolist() for x in shifts], 'sample_size': test_prot.sample_size, 'num_samples': test_prot.total() } save_json_file(path, info) def gen_tables(basedir, datasets): mock_h = LogisticRegression(), methods = [method for method, _ in gen_CAP(mock_h, None)] + [method for method, _ in gen_CAP_cont_table(mock_h)] classifiers = [classifier for classifier, _ in gen_classifiers()] os.makedirs('./tables', exist_ok=True) with_oracle = 'oracle' in basedir tex_doc = """ \\documentclass[10pt,a4paper]{article} \\usepackage[utf8]{inputenc} \\usepackage{amsmath} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{graphicx} \\usepackage{tabularx} \\usepackage{color} \\usepackage{colortbl} \\usepackage{xcolor} \\begin{document} """ for classifier in classifiers: for metric in [measure for measure, _ in gen_acc_measure()]: table = Table(datasets, methods, prec_mean=5, clean_zero=True) for method, dataset in itertools.product(methods, datasets): path = getpath(basedir, classifier, metric, dataset, method) if not os.path.exists(path): print('missing ', path) continue results = json.load(open(path, 'r')) true_acc = results['true_acc'] estim_acc = np.asarray(results['estim_acc']) if any(np.isnan(estim_acc)): print(f'nan values found in {method=} {dataset=}') continue if any(estim_acc>1.00001): print(f'values >1 found in {method=} {dataset=} [max={estim_acc.max()}]') continue if any(estim_acc<-0.00001): print(f'values <0 found in {method=} {dataset=} [min={estim_acc.min()}]') continue errors = cap_errors(true_acc, estim_acc) table.add(dataset, method, errors) tex = table.latexTabular() table_name = f'{basedir}_{classifier}_{metric}.tex' with open(f'./tables/{table_name}', 'wt') as foo: foo.write('\\begin{table}[h]\n') foo.write('\\centering\n') foo.write('\\resizebox{\\textwidth}{!}{%\n') foo.write('\\begin{tabular}{c|'+('c'*len(methods))+'}\n') foo.write(tex) foo.write('\\end{tabular}%\n') foo.write('}\n') foo.write('\\caption{Classifier ' + classifier.replace('_', ' ') + ('(oracle)' if with_oracle else '') + ' evaluated in terms of ' + metric.replace('_', ' ') + '}\n') foo.write('\\end{table}\n') tex_doc += "\input{" + table_name + "}\n\n" tex_doc += """ \\end{document} """ with open(f'./tables/main.tex', 'wt') as foo: foo.write(tex_doc) print("[Tables Done] runing latex") os.chdir('./tables/') os.system('pdflatex main.tex') os.system('rm main.aux main.log')