import quapy as qp import numpy as np from os import makedirs import sys, os import pickle import argparse from TweetSentQuant.util import nicename, get_ranks_from_Gao_Sebastiani import settings from experiments import result_path from tabular import Table tables_path = './tables' results_path = './results' MAXTONE = 50 # sets the intensity of the maximum color reached by the worst (red) and best (green) results makedirs(tables_path, exist_ok=True) qp.environ['SAMPLE_SIZE'] = settings.SAMPLE_SIZE def save_table(path, table): print(f'saving results in {path}') with open(path, 'wt') as foo: foo.write(table) def experiment_errors(path, dataset, method, optloss, loss): path = result_path(path, dataset, method, 'm'+optloss if not loss.startswith('m') else optloss) if os.path.exists(path): true_prevs, estim_prevs, _, _, _, _ = pickle.load(open(path, 'rb')) err_fn = getattr(qp.error, loss) errors = err_fn(true_prevs, estim_prevs) return errors return None if __name__ == '__main__': datasets = qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST evaluation_measures = [qp.error.ae, qp.error.rae] secundary_eval_measures = [qp.error.kld.__name__, qp.error.nkld.__name__, qp.error.se.__name__] gao_seb_methods = ['cc', 'acc', 'pcc', 'pacc', 'sld', 'svmq', 'svmkld', 'svmnkld'] new_methods = ['hdy', 'quanet'] gao_seb_ranks, gao_seb_results = get_ranks_from_Gao_Sebastiani() for i, eval_func in enumerate(evaluation_measures): # Tables evaluation scores for AE and RAE (two tables) # ---------------------------------------------------- main_eval_name = eval_func.__name__ added_methods = ['svmm' + main_eval_name, f'epaccm{main_eval_name}ptr', f'epaccm{main_eval_name}m{main_eval_name}'] + new_methods methods = gao_seb_methods + added_methods nold_methods = len(gao_seb_methods) nnew_methods = len(added_methods) for eval_name in [main_eval_name] + secundary_eval_measures: # fill data table table = Table(benchmarks=datasets, methods=methods) for dataset in datasets: for method in methods: table.add(dataset, method, experiment_errors(results_path, dataset, method, main_eval_name, eval_name)) # write the latex table tabular = """ \\resizebox{\\textwidth}{!}{% \\begin{tabular}{|c||""" + ('c|' * nold_methods) + '|' + ('c|' * nnew_methods) + """} \hline & \multicolumn{""" + str(nold_methods) + """}{c||}{Methods tested in~\cite{Gao:2016uq}} & \multicolumn{""" + str(nnew_methods) + """}{c|}{Newly added methods} \\\\ \hline """ rowreplace={dataset: nicename(dataset) for dataset in datasets} colreplace={method: nicename(method, main_eval_name, side=True) for method in methods} tabular += table.latexTabular(benchmark_replace=rowreplace, method_replace=colreplace) tabular += """ \end{tabular}% } """ save_table(f'./tables/tab_results_{main_eval_name}_{eval_name}.tex', tabular) continue # Tables ranks for AE and RAE (two tables) # ---------------------------------------------------- methods = gao_seb_methods table.dropMethods(added_methods) # fill the data table ranktable = Table(benchmarks=datasets, methods=methods, missing='--') for dataset in datasets: for method in methods: ranktable.add(dataset, method, values=table.get(dataset, method, 'rank')) # write the latex table tabular = """ \\resizebox{\\textwidth}{!}{% \\begin{tabular}{|c||""" + ('c|' * len(gao_seb_methods)) + """} \hline & \multicolumn{""" + str(nold_methods) + """}{c|}{Methods tested in~\cite{Gao:2016uq}} \\\\ \hline """ for method in methods: tabular += ' & ' + nicename(method, eval_name, side=True) tabular += "\\\\\hline\n" for dataset in datasets: tabular += nicename(dataset) + ' ' for method in methods: newrank = ranktable.get(dataset, method) oldrank = gao_seb_ranks[f'{dataset}-{method}-{eval_name}'] if newrank != '--': newrank = f'{int(newrank)}' color = ranktable.get_color(dataset, method) if color == '--': color = '' tabular += ' & ' + f'{newrank}' + f' ({oldrank}) ' + color tabular += '\\\\\hline\n' tabular += '\hline\n' tabular += 'Average ' for method in methods: newrank = ranktable.get_average(method) oldrank = gao_seb_ranks[f'Average-{method}-{eval_name}'] if newrank != '--': newrank = f'{newrank:.1f}' oldrank = f'{oldrank:.1f}' color = ranktable.get_average(method, 'color') if color == '--': color = '' tabular += ' & ' + f'{newrank}' + f' ({oldrank}) ' + color tabular += '\\\\\hline\n' tabular += """ \end{tabular}% } """ save_table(f'./tables/tab_rank_{main_eval_name}.{eval_name}.tex', tabular) print("[Done]")