import quapy as qp import numpy as np from os import makedirs import sys, os import pickle import argparse from common import * from uci_experiments import result_path from tabular import Table from uci_experiments import * import itertools tables_path = './tables_uci' MAXTONE = 50 # sets the intensity of the maximum color reached by the worst (red) and best (green) results makedirs(tables_path, exist_ok=True) qp.environ['SAMPLE_SIZE'] = SAMPLE_SIZE METHODS = [#'cc', 'acc', # 'pcc', # 'pacc', # 'wpacc', 'pcc.opt', 'pacc.opt', 'wpacc.opt', 'ds.opt', # 'pcc.opt.svm', # 'pacc.opt.svm', # 'wpacc.opt.svm', # 'wpacc.opt2', # 'MAX', 'MS', 'MS2', 'sldc', # 'svmmae', # 'hdy', # 'ehdymaeds', # 'EMdiag', 'EMfull', 'EMtied', 'EMspherical', # 'VEMdiag', 'VEMfull', 'VEMtied', 'VEMspherical', ] if __name__ == '__main__': results = 'results_uci' datasets = qp.datasets.UCI_DATASETS datasets.remove('acute.a') datasets.remove('acute.b') datasets.remove('iris.1') evaluation_measures = [qp.error.ae, qp.error.rae, qp.error.kld] for i, eval_func in enumerate(evaluation_measures): eval_name = eval_func.__name__ # Tables evaluation scores for the evaluation measure # ---------------------------------------------------- # fill data table table = Table(benchmarks=datasets, methods=METHODS) for dataset, method, run in itertools.product(datasets, METHODS, range(N_FOLDS*N_REPEATS)): table.add(dataset, method, experiment_errors(results, dataset, method, run, eval_name, optim_loss='ae')) # write the latex table nmethods = len(METHODS) tabular = """ \\resizebox{\\textwidth}{!}{% \\begin{tabular}{|c||""" + ('c|' * nmethods) + '|' + """} \hline & \multicolumn{""" + str(nmethods) + """}{c||}{Quantification methods} \\\\ \hline """ rowreplace={dataset: nicename(dataset) for dataset in datasets} colreplace={method: nicename(method, eval_name, side=True) for method in METHODS} tabular += table.latexTabular(benchmark_replace=rowreplace, method_replace=colreplace) tabular += 'Rank Average & ' + table.getRankTable().latexAverage() tabular += """ \end{tabular}% } """ save_table(f'{tables_path}/tab_results_{eval_name}.tex', tabular) print("[Done]")