from sklearn.calibration import CalibratedClassifierCV import quapy as qp from sklearn.linear_model import LogisticRegression from class_weight_model import ClassWeightPCC # from classification.methods import LowRankLogisticRegression # from method.experimental import ExpMax, VarExpMax from common import * from method.meta import QuaNet from quantification_stumps_model import QuantificationStumpRegressor from quapy.method.aggregative import CC, ACC, PCC, PACC, MAX, MS, MS2, EMQ, SVMAE, HDy from quapy.method.meta import EHDy import numpy as np import os import pickle import itertools import argparse import torch import shutil SAMPLE_SIZE = 500 N_JOBS = -1 CUDA_N_JOBS = 2 ENSEMBLE_N_JOBS = -1 qp.environ['SAMPLE_SIZE'] = SAMPLE_SIZE __C_range = np.logspace(-3, 3, 7) lr_params = {'C': __C_range, 'class_weight': [None, 'balanced']} svmperf_params = {'C': __C_range} def quantification_models(): # yield 'cc', CC(newLR()), lr_params # yield 'acc', ACC(newLR()), lr_params # yield 'pcc', PCC(newLR()), None # yield 'pacc', PACC(newLR()), None # yield 'wpacc', ClassWeightPCC(), None # yield 'pcc.opt', PCC(newLR()), lr_params # yield 'pacc.opt', PACC(newLR()), lr_params # yield 'wpacc.opt', ClassWeightPCC(), lr_params yield 'ds', QuantificationStumpRegressor(SAMPLE_SIZE, 21, 10), None # yield 'ds.opt', QuantificationStumpRegressor(SAMPLE_SIZE), {'C': __C_range} # yield 'MAX', MAX(newLR()), lr_params # yield 'MS', MS(newLR()), lr_params # yield 'MS2', MS2(newLR()), lr_params # yield 'sldc', EMQ(calibratedLR()), lr_params # yield 'svmmae', SVMAE(), svmperf_params # yield 'hdy', HDy(newLR()), lr_params # yield 'EMdiag', ExpMax(cov_type='diag'), None # yield 'EMfull', ExpMax(cov_type='full'), None # yield 'EMtied', ExpMax(cov_type='tied'), None # yield 'EMspherical', ExpMax(cov_type='spherical'), None # yield 'VEMdiag', VarExpMax(cov_type='diag'), None # yield 'VEMfull', VarExpMax(cov_type='full'), None # yield 'VEMtied', VarExpMax(cov_type='tied'), None # yield 'VEMspherical', VarExpMax(cov_type='spherical'), None # def quantification_cuda_models(): # device = 'cuda' if torch.cuda.is_available() else 'cpu' # print(f'Running QuaNet in {device}') # learner = LowRankLogisticRegression(**newLR().get_params()) # yield 'quanet', QuaNet(learner, SAMPLE_SIZE, checkpointdir=args.checkpointdir, device=device), lr_params def quantification_ensembles(): param_mod_sel = { 'sample_size': SAMPLE_SIZE, 'n_prevpoints': 21, 'n_repetitions': 5, 'refit': True, 'verbose': False } common = { 'size': 30, 'red_size': 15, 'max_sample_size': None, # same as training set 'n_jobs': ENSEMBLE_N_JOBS, 'param_grid': lr_params, 'param_mod_sel': param_mod_sel, 'val_split': 0.4, 'min_pos': 5 } # hyperparameters will be evaluated within each quantifier of the ensemble, and so the typical model selection # will be skipped (by setting hyperparameters to None) hyper_none = None yield 'ehdymaeds', EHDy(newLR(), optim='mae', policy='ds', **common), hyper_none def run(experiment): optim_loss, dataset_name, (model_name, model, hyperparams) = experiment if dataset_name == 'imdb': return data = qp.datasets.fetch_reviews(dataset_name, tfidf=True, min_df=5) run=0 if is_already_computed(args.results, dataset_name, model_name, run=run, optim_loss=optim_loss): print(f'result for dataset={dataset_name} model={model_name} loss={optim_loss} already computed.') return print(f'running dataset={dataset_name} model={model_name} loss={optim_loss}') # model selection (hyperparameter optimization for a quantification-oriented loss) if hyperparams is not None: model_selection = qp.model_selection.GridSearchQ( model, param_grid=hyperparams, sample_size=SAMPLE_SIZE, n_prevpoints=21, n_repetitions=100, error=optim_loss, refit=True, timeout=60 * 60, verbose=True ) model_selection.fit(data.training) model = model_selection.best_model() best_params = model_selection.best_params_ else: model.fit(data.training) best_params = {} # model evaluation true_prevalences, estim_prevalences = qp.evaluation.artificial_prevalence_prediction( model, test=data.test, sample_size=SAMPLE_SIZE, n_prevpoints=21, # 21 n_repetitions=10, # 100 n_jobs=-1 if isinstance(model, qp.method.meta.Ensemble) else 1, verbose=True ) test_true_prevalence = data.test.prevalence() evaluate_experiment(true_prevalences, estim_prevalences) save_results(args.results, dataset_name, model_name, run, optim_loss, true_prevalences, estim_prevalences, data.training.prevalence(), test_true_prevalence, best_params) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Run experiments for Tweeter Sentiment Quantification') parser.add_argument('results', metavar='RESULT_PATH', type=str, help='path to the directory where to store the results') parser.add_argument('--svmperfpath', metavar='SVMPERF_PATH', type=str, default='./svm_perf_quantification', help='path to the directory with svmperf') parser.add_argument('--checkpointdir', metavar='PATH', type=str, default='./checkpoint', help='path to the directory where to dump QuaNet checkpoints') args = parser.parse_args() print(f'Result folder: {args.results}') np.random.seed(0) qp.environ['SVMPERF_HOME'] = args.svmperfpath optim_losses = ['mae'] datasets = qp.datasets.REVIEWS_SENTIMENT_DATASETS models = quantification_models() qp.util.parallel(run, itertools.product(optim_losses, datasets, models), n_jobs=N_JOBS) # models = quantification_cuda_models() # qp.util.parallel(run, itertools.product(optim_losses, datasets, models), n_jobs=CUDA_N_JOBS) # models = quantification_ensembles() # qp.util.parallel(run, itertools.product(optim_losses, datasets, models), n_jobs=1) shutil.rmtree(args.checkpointdir, ignore_errors=True)