import pickle import os from sklearn.calibration import CalibratedClassifierCV from sklearn.linear_model import LogisticRegression import quapy as qp def newLR(): return LogisticRegression(max_iter=1000, solver='lbfgs', n_jobs=-1) def calibratedLR(): return CalibratedClassifierCV(LogisticRegression(max_iter=1000, solver='lbfgs', n_jobs=-1)) def save_results(result_dir, dataset_name, model_name, run, optim_loss, *results): rpath = result_path(result_dir, dataset_name, model_name, run, optim_loss) qp.util.create_parent_dir(rpath) with open(rpath, 'wb') as foo: pickle.dump(tuple(results), foo, pickle.HIGHEST_PROTOCOL) def evaluate_experiment(true_prevalences, estim_prevalences): print('\nEvaluation Metrics:\n' + '=' * 22) for eval_measure in [qp.error.mae, qp.error.mrae]: err = eval_measure(true_prevalences, estim_prevalences) print(f'\t{eval_measure.__name__}={err:.4f}') print() def result_path(path, dataset_name, model_name, run, optim_loss): return os.path.join(path, f'{dataset_name}-{model_name}-run{run}-{optim_loss}.pkl') def is_already_computed(result_dir, dataset_name, model_name, run, optim_loss): return os.path.exists(result_path(result_dir, dataset_name, model_name, run, optim_loss)) nice = { 'pacc.opt': 'PACC(LR)', 'pacc.opt.svm': 'PACC(SVM)', 'pcc.opt': 'PCC(LR)', 'pcc.opt.svm': 'PCC(SVM)', 'wpacc.opt': 'R-PCC(LR)', 'wpacc.opt.svm': 'R-PCC(SVM)', 'mae':'AE', 'ae':'AE', 'svmkld': 'SVM(KLD)', 'svmnkld': 'SVM(NKLD)', 'svmq': 'SVM(Q)', 'svmae': 'SVM(AE)', 'svmmae': 'SVM(AE)', 'svmmrae': 'SVM(RAE)', 'hdy': 'HDy', 'sldc': 'SLD', 'X': 'TSX', 'T50': 'TS50', 'ehdymaeds': 'E(HDy)$_\mathrm{DS}$', 'Average': 'Average', 'EMdiag':'EM$_{diag}$', 'EMfull':'EM$_{full}$', 'EMtied':'EM$_{tied}$', 'EMspherical':'EM$_{sph}$', 'VEMdiag':'VEM$_{diag}$', 'VEMfull':'VEM$_{full}$', 'VEMtied':'VEM$_{tied}$', 'VEMspherical':'VEM$_{sph}$', 'epaccmaemae1k': 'E(PACC)$_\mathrm{AE}$', 'quanet': 'QuaNet' } def nicerm(key): return '\mathrm{'+nice[key]+'}' def nicename(method, eval_name=None, side=False): m = nice.get(method, method.upper()) if eval_name is not None: m = m.replace('$$','') if side: m = '\side{'+m+'}' return m def save_table(path, table): print(f'saving results in {path}') with open(path, 'wt') as foo: foo.write(table) def experiment_errors(path, dataset, method, run, eval_loss, optim_loss=None): if optim_loss is None: optim_loss = eval_loss path = result_path(path, dataset, method, run, 'm' + optim_loss if not optim_loss.startswith('m') else optim_loss) if os.path.exists(path): true_prevs, estim_prevs, _, _, _ = pickle.load(open(path, 'rb')) err_fn = getattr(qp.error, eval_loss) errors = err_fn(true_prevs, estim_prevs) return errors return None