Classifiers - Classifiers binary, single-label, OneVsRest or MultiOutput: - LR - LinearSVC (?) - Classifiers natively multi-label: - from scikit-multilearn (x11) - Protocols: - NPP - APP (for each class) Things to test: - MultiChain for classification, MultiChain for regression... - Reimplement stacking with sklearn.ensemble.StackingClassifier? No parece facil. - Independent classifiers + independent quantifiers - Stacking + independent quantifiers - ClassifierChain + independent quantifiers - Independent quantifiers + cross-class regression (independent?) - Stacking + cross-class regression - ClassifierChain + cross-class regression - Covariates (Means, CovMatrix from samples) + multioutput regression? - Covariates concatented with quantifiers predictions + cross-class regression? - Model Selection for specific protocols? TODO: - decide methods - decide classifiers binary - decide classifiers multi-label - decide quantifiers naive - decide quantifiers multi-label - decide datasets