import quapy as qp from quapy.method.aggregative import MS2, OneVsAllAggregative, OneVsAllGeneric from quapy.method.base import getOneVsAll from quapy.model_selection import GridSearchQ from quapy.protocol import USimplexPP from sklearn.linear_model import LogisticRegression import numpy as np """ In this example, we will create a quantifier for tweet sentiment analysis considering three classes: negative, neutral, and positive. We will use a one-vs-all approach using a binary quantifier for demonstration purposes. """ qp.environ['SAMPLE_SIZE'] = 100 qp.environ['N_JOBS'] = -1 """ Any binary quantifier can be turned into a single-label quantifier by means of getOneVsAll function. This function returns an instance of OneVsAll quantifier. Actually, it either returns the subclass OneVsAllGeneric when the quantifier is an instance of BaseQuantifier, and it returns OneVsAllAggregative when the quantifier is an instance of AggregativeQuantifier. Although OneVsAllGeneric works in all cases, using OneVsAllAggregative has some additional advantages (namely, all the advantages that AggregativeQuantifiers enjoy, i.e., faster predictions during evaluation). """ quantifier = getOneVsAll(MS2(LogisticRegression())) print(f'the quantifier is an instance of {quantifier.__class__.__name__}') # load a ternary dataset train_modsel, val = qp.datasets.fetch_twitter('hcr', for_model_selection=True, pickle=True).train_test """ model selection: for this example, we are relying on the USimplexPP protocol, i.e., a variant of the artificial-prevalence protocol that generates random samples (100 in this case) for randomly picked priors from the unit simplex. The priors are sampled using the Kraemer algorithm. Note this is in contrast to the standard APP protocol, that instead explores a prefixed grid of prevalence values. """ param_grid = { 'binary_quantifier__classifier__C': np.logspace(-2,2,5), # classifier-dependent hyperparameter 'binary_quantifier__classifier__class_weight': ['balanced', None] # classifier-dependent hyperparameter } print('starting model selection') model_selection = GridSearchQ(quantifier, param_grid, protocol=USimplexPP(val), verbose=True, refit=False) quantifier = model_selection.fit(train_modsel).best_model() print('training on the whole training set') train, test = qp.datasets.fetch_twitter('hcr', for_model_selection=False, pickle=True).train_test quantifier.fit(train) # evaluation mae = qp.evaluation.evaluate(quantifier, protocol=USimplexPP(test), error_metric='mae') print(f'MAE = {mae:.4f}')