import numpy as np from sklearn.linear_model import LogisticRegression from quapy.method.aggregative import CC, PCC, ACC, PACC, EMQ from quapy.benchmarking._base import MethodDescriptor lr_hyper = {'C': np.logspace(-3, 3, 7), 'class_weight': ['balanced', None]} wrap_cls_params = lambda params: {'classifier__' + key: val for key, val in params.items()} cc = MethodDescriptor( id='CC', name='CC(LR)', instance=CC(LogisticRegression()), hyperparams=wrap_cls_params(lr_hyper) ) pcc = MethodDescriptor( id='PCC', name='PCC(LR)', instance=PCC(LogisticRegression()), hyperparams=wrap_cls_params(lr_hyper) ) acc = MethodDescriptor( id='ACC', name='ACC(LR)', instance=ACC(LogisticRegression()), hyperparams=wrap_cls_params(lr_hyper) ) pacc = MethodDescriptor( id='PACC', name='PACC(LR)', instance=PACC(LogisticRegression()), hyperparams=wrap_cls_params(lr_hyper) ) sld = MethodDescriptor( id='SLD', name='SLD', instance=EMQ(LogisticRegression()), hyperparams=wrap_cls_params(lr_hyper) ) sld_bcts = MethodDescriptor( id='SLD-BCTS', name='SLD-BCTS', instance=EMQ(LogisticRegression(), recalib='bcts', exact_train_prev=False), hyperparams=wrap_cls_params(lr_hyper) )