from collections import defaultdict from time import time from utils import * from models_multiclass import * from quapy.protocol import UPP from commons import * qp.environ['SAMPLE_SIZE'] = 250 NUM_TEST = 100 for cls_name, h in gen_classifiers(): print(cls_name) acc_trues = defaultdict(lambda : []) # acc_name : list of results acc_predicted = defaultdict(lambda : defaultdict(lambda : [])) # acc_name : method_name : list of results for dataset_name, (L, V, U) in gen_datasets(): print(dataset_name) h.fit(*L.Xy) # test generation protocol test_prot = UPP(U, repeats=NUM_TEST, return_type='labelled_collection', random_state=0) # compute some stats of the dataset get_dataset_stats(f'dataset_stats/{dataset_name}.json', test_prot, L, V) # precompute the actual accuracy values dataset_true_accs = {} for acc_name, acc_fn in gen_acc_measure(): dataset_true_accs[acc_name] = [true_acc(h, acc_fn, Ui) for Ui in test_prot()] acc_trues[acc_name].extend(dataset_true_accs[acc_name]) for method_name, method in gen_CAP(h, vanilla_acc_fn): print('PARCHEADO con vanilla accuracy') # training tinit = time() method.fit(V) t_train = time()-tinit # predictions dataset_method_accs, t_test_ave = get_method_predictions(method, test_prot, gen_acc_measure) # accumulate results across datasets for acc_name, _ in gen_acc_measure(): acc_predicted[acc_name][method_name].extend(dataset_method_accs[acc_name]) print(f'\t{method_name} took train={t_train:.2f}s test(ave)={t_test_ave:.2f}s') result = { 't_train': t_train, 't_test_ave': t_test_ave, 'true_acc': dataset_true_accs[acc_name], 'estim_acc': dataset_method_accs[acc_name] } save_json_file(f"results/{cls_name}/{acc_name}/{dataset_name}/{method_name}.json", result) for acc_name, _ in gen_acc_measure(): acc_predicted_ = list(acc_predicted[acc_name].items()) plot_diagonal(cls_name, acc_name, acc_trues[acc_name], acc_predicted_) gen_tables()