""" Utility functions for `Bayesian quantification `_ methods. """ import numpy as np try: import jax import jax.numpy as jnp import numpyro import numpyro.distributions as dist DEPENDENCIES_INSTALLED = True except ImportError: jax = None jnp = None numpyro = None dist = None DEPENDENCIES_INSTALLED = False P_TEST_Y: str = "P_test(Y)" P_TEST_C: str = "P_test(C)" P_C_COND_Y: str = "P(C|Y)" def model(n_c_unlabeled: np.ndarray, n_y_and_c_labeled: np.ndarray) -> None: """ Defines a probabilistic model in `NumPyro `_. :param n_c_unlabeled: a `np.ndarray` of shape `(n_predicted_classes,)` with entry `c` being the number of instances predicted as class `c`. :param n_y_and_c_labeled: a `np.ndarray` of shape `(n_classes, n_predicted_classes)` with entry `(y, c)` being the number of instances labeled as class `y` and predicted as class `c`. """ n_y_labeled = n_y_and_c_labeled.sum(axis=1) K = len(n_c_unlabeled) L = len(n_y_labeled) pi_ = numpyro.sample(P_TEST_Y, dist.Dirichlet(jnp.ones(L))) p_c_cond_y = numpyro.sample(P_C_COND_Y, dist.Dirichlet(jnp.ones(K).repeat(L).reshape(L, K))) with numpyro.plate('plate', L): numpyro.sample('F_yc', dist.Multinomial(n_y_labeled, p_c_cond_y), obs=n_y_and_c_labeled) p_c = numpyro.deterministic(P_TEST_C, jnp.einsum("yc,y->c", p_c_cond_y, pi_)) numpyro.sample('N_c', dist.Multinomial(jnp.sum(n_c_unlabeled), p_c), obs=n_c_unlabeled) def sample_posterior( n_c_unlabeled: np.ndarray, n_y_and_c_labeled: np.ndarray, num_warmup: int, num_samples: int, seed: int = 0, ) -> dict: """ Samples from the Bayesian quantification model in NumPyro using the `NUTS `_ sampler. :param n_c_unlabeled: a `np.ndarray` of shape `(n_predicted_classes,)` with entry `c` being the number of instances predicted as class `c`. :param n_y_and_c_labeled: a `np.ndarray` of shape `(n_classes, n_predicted_classes)` with entry `(y, c)` being the number of instances labeled as class `y` and predicted as class `c`. :param num_warmup: the number of warmup steps. :param num_samples: the number of samples to draw. :seed: the random seed. :return: a `dict` with the samples. The keys are the names of the latent variables. """ mcmc = numpyro.infer.MCMC( numpyro.infer.NUTS(model), num_warmup=num_warmup, num_samples=num_samples, progress_bar=False ) rng_key = jax.random.PRNGKey(seed) mcmc.run(rng_key, n_c_unlabeled=n_c_unlabeled, n_y_and_c_labeled=n_y_and_c_labeled) return mcmc.get_samples()