import numpy as np from sklearn.linear_model import LogisticRegression import os import sys import pandas as pd import quapy as qp from quapy.method.aggregative import DistributionMatching from method_kdey import KDEy from quapy.model_selection import GridSearchQ from quapy.protocol import UPP if __name__ == '__main__': qp.environ['SAMPLE_SIZE'] = 100 qp.environ['N_JOBS'] = -1 method = 'KDE' param = 0.1 target = 'max_likelihood' div = 'topsoe' method_identifier = f'{method}_modsel_{div if target=="min_divergence" else target}' os.makedirs('results', exist_ok=True) result_path = f'results/{method_identifier}.csv' #if os.path.exists(result_path): # print('Result already exit. Nothing to do') # sys.exit(0) with open(result_path, 'wt') as csv: csv.write(f'Method\tDataset\tMAE\tMRAE\n') for dataset in qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST: print('init', dataset) data = qp.datasets.fetch_twitter(dataset, min_df=3, pickle=True, for_model_selection=True) if method == 'KDE': param_grid = {'bandwidth': np.linspace(0.001, 0.2, 21)} model = KDEy(LogisticRegression(), divergence=div, bandwidth=param, engine='sklearn', target=target) else: raise NotImplementedError('unknown method') protocol = UPP(data.test, repeats=100) modsel = GridSearchQ(model, param_grid, protocol, refit=False, n_jobs=-1, verbose=1) modsel.fit(data.training) print(f'best params {modsel.best_params_}') quantifier = modsel.best_model() data = qp.datasets.fetch_twitter(dataset, min_df=3, pickle=True, for_model_selection=False) quantifier.fit(data.training) protocol = UPP(data.test, repeats=100) report = qp.evaluation.evaluation_report(quantifier, protocol, error_metrics=['mae', 'mrae'], verbose=True) means = report.mean() csv.write(f'{method_identifier}\t{data.name}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\n') csv.flush() df = pd.read_csv(result_path, sep='\t') pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE", "MRAE"]) print(pv)