<!DOCTYPE html>
<html class="writer-html5" lang="en">
<head>
  <meta charset="utf-8" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  <title>quapy.error &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.8 documentation</title>
      <link rel="stylesheet" type="text/css" href="../../_static/pygments.css" />
      <link rel="stylesheet" type="text/css" href="../../_static/css/theme.css" />

  
  <!--[if lt IE 9]>
    <script src="../../_static/js/html5shiv.min.js"></script>
  <![endif]-->
  
        <script data-url_root="../../" id="documentation_options" src="../../_static/documentation_options.js"></script>
        <script src="../../_static/jquery.js"></script>
        <script src="../../_static/underscore.js"></script>
        <script src="../../_static/_sphinx_javascript_frameworks_compat.js"></script>
        <script src="../../_static/doctools.js"></script>
        <script src="../../_static/sphinx_highlight.js"></script>
    <script src="../../_static/js/theme.js"></script>
    <link rel="index" title="Index" href="../../genindex.html" />
    <link rel="search" title="Search" href="../../search.html" /> 
</head>

<body class="wy-body-for-nav"> 
  <div class="wy-grid-for-nav">
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search" >

          
          
          <a href="../../index.html" class="icon icon-home">
            QuaPy: A Python-based open-source framework for quantification
          </a>
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>
        </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
              <ul>
<li class="toctree-l1"><a class="reference internal" href="../../modules.html">quapy</a></li>
</ul>

        </div>
      </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
          <a href="../../index.html">QuaPy: A Python-based open-source framework for quantification</a>
      </nav>

      <div class="wy-nav-content">
        <div class="rst-content">
          <div role="navigation" aria-label="Page navigation">
  <ul class="wy-breadcrumbs">
      <li><a href="../../index.html" class="icon icon-home" aria-label="Home"></a></li>
          <li class="breadcrumb-item"><a href="../index.html">Module code</a></li>
      <li class="breadcrumb-item active">quapy.error</li>
      <li class="wy-breadcrumbs-aside">
      </li>
  </ul>
  <hr/>
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
             
  <h1>Source code for quapy.error</h1><div class="highlight"><pre>
<span></span><span class="sd">&quot;&quot;&quot;Implementation of error measures used for quantification&quot;&quot;&quot;</span>

<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="kn">import</span> <span class="n">f1_score</span>
<span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>


<div class="viewcode-block" id="from_name"><a class="viewcode-back" href="../../quapy.html#quapy.error.from_name">[docs]</a><span class="k">def</span> <span class="nf">from_name</span><span class="p">(</span><span class="n">err_name</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Gets an error function from its name. E.g., `from_name(&quot;mae&quot;)`</span>
<span class="sd">    will return function :meth:`quapy.error.mae`</span>

<span class="sd">    :param err_name: string, the error name</span>
<span class="sd">    :return: a callable implementing the requested error</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">assert</span> <span class="n">err_name</span> <span class="ow">in</span> <span class="n">ERROR_NAMES</span><span class="p">,</span> <span class="sa">f</span><span class="s1">&#39;unknown error </span><span class="si">{</span><span class="n">err_name</span><span class="si">}</span><span class="s1">&#39;</span>
    <span class="n">callable_error</span> <span class="o">=</span> <span class="nb">globals</span><span class="p">()[</span><span class="n">err_name</span><span class="p">]</span>
    <span class="k">return</span> <span class="n">callable_error</span></div>


<div class="viewcode-block" id="f1e"><a class="viewcode-back" href="../../quapy.html#quapy.error.f1e">[docs]</a><span class="k">def</span> <span class="nf">f1e</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;F1 error: simply computes the error in terms of macro :math:`F_1`, i.e.,</span>
<span class="sd">    :math:`1-F_1^M`, where :math:`F_1` is the harmonic mean of precision and recall,</span>
<span class="sd">    defined as :math:`\\frac{2tp}{2tp+fp+fn}`, with `tp`, `fp`, and `fn` standing</span>
<span class="sd">    for true positives, false positives, and false negatives, respectively.</span>
<span class="sd">    `Macro` averaging means the :math:`F_1` is computed for each category independently,</span>
<span class="sd">    and then averaged.</span>

<span class="sd">    :param y_true: array-like of true labels</span>
<span class="sd">    :param y_pred: array-like of predicted labels</span>
<span class="sd">    :return: :math:`1-F_1^M`</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">return</span> <span class="mf">1.</span> <span class="o">-</span> <span class="n">f1_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">,</span> <span class="n">average</span><span class="o">=</span><span class="s1">&#39;macro&#39;</span><span class="p">)</span></div>


<div class="viewcode-block" id="acce"><a class="viewcode-back" href="../../quapy.html#quapy.error.acce">[docs]</a><span class="k">def</span> <span class="nf">acce</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Computes the error in terms of 1-accuracy. The accuracy is computed as</span>
<span class="sd">    :math:`\\frac{tp+tn}{tp+fp+fn+tn}`, with `tp`, `fp`, `fn`, and `tn` standing</span>
<span class="sd">    for true positives, false positives, false negatives, and true negatives,</span>
<span class="sd">    respectively</span>

<span class="sd">    :param y_true: array-like of true labels</span>
<span class="sd">    :param y_pred: array-like of predicted labels</span>
<span class="sd">    :return: 1-accuracy</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">return</span> <span class="mf">1.</span> <span class="o">-</span> <span class="p">(</span><span class="n">y_true</span> <span class="o">==</span> <span class="n">y_pred</span><span class="p">)</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span></div>


<div class="viewcode-block" id="mae"><a class="viewcode-back" href="../../quapy.html#quapy.error.mae">[docs]</a><span class="k">def</span> <span class="nf">mae</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Computes the mean absolute error (see :meth:`quapy.error.ae`) across the sample pairs.</span>

<span class="sd">    :param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values</span>
<span class="sd">    :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted</span>
<span class="sd">        prevalence values</span>
<span class="sd">    :return: mean absolute error</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">return</span> <span class="n">ae</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">)</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span></div>


<div class="viewcode-block" id="ae"><a class="viewcode-back" href="../../quapy.html#quapy.error.ae">[docs]</a><span class="k">def</span> <span class="nf">ae</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Computes the absolute error between the two prevalence vectors.</span>
<span class="sd">     Absolute error between two prevalence vectors :math:`p` and :math:`\\hat{p}`  is computed as</span>
<span class="sd">     :math:`AE(p,\\hat{p})=\\frac{1}{|\\mathcal{Y}|}\\sum_{y\\in \\mathcal{Y}}|\\hat{p}(y)-p(y)|`,</span>
<span class="sd">     where :math:`\\mathcal{Y}` are the classes of interest.</span>

<span class="sd">    :param prevs: array-like of shape `(n_classes,)` with the true prevalence values</span>
<span class="sd">    :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values</span>
<span class="sd">    :return: absolute error</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">assert</span> <span class="n">prevs</span><span class="o">.</span><span class="n">shape</span> <span class="o">==</span> <span class="n">prevs_hat</span><span class="o">.</span><span class="n">shape</span><span class="p">,</span> <span class="sa">f</span><span class="s1">&#39;wrong shape </span><span class="si">{</span><span class="n">prevs</span><span class="o">.</span><span class="n">shape</span><span class="si">}</span><span class="s1"> vs. </span><span class="si">{</span><span class="n">prevs_hat</span><span class="o">.</span><span class="n">shape</span><span class="si">}</span><span class="s1">&#39;</span>
    <span class="k">return</span> <span class="nb">abs</span><span class="p">(</span><span class="n">prevs_hat</span> <span class="o">-</span> <span class="n">prevs</span><span class="p">)</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">axis</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span></div>


<div class="viewcode-block" id="nae"><a class="viewcode-back" href="../../quapy.html#quapy.error.nae">[docs]</a><span class="k">def</span> <span class="nf">nae</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Computes the normalized absolute error between the two prevalence vectors.</span>
<span class="sd">     Normalized absolute error between two prevalence vectors :math:`p` and :math:`\\hat{p}`  is computed as</span>
<span class="sd">     :math:`NAE(p,\\hat{p})=\\frac{AE(p,\\hat{p})}{z_{AE}}`,</span>
<span class="sd">     where :math:`z_{AE}=\\frac{2(1-\\min_{y\\in \\mathcal{Y}} p(y))}{|\\mathcal{Y}|}`, and :math:`\\mathcal{Y}`</span>
<span class="sd">     are the classes of interest.</span>

<span class="sd">    :param prevs: array-like of shape `(n_classes,)` with the true prevalence values</span>
<span class="sd">    :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values</span>
<span class="sd">    :return: normalized absolute error</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">assert</span> <span class="n">prevs</span><span class="o">.</span><span class="n">shape</span> <span class="o">==</span> <span class="n">prevs_hat</span><span class="o">.</span><span class="n">shape</span><span class="p">,</span> <span class="sa">f</span><span class="s1">&#39;wrong shape </span><span class="si">{</span><span class="n">prevs</span><span class="o">.</span><span class="n">shape</span><span class="si">}</span><span class="s1"> vs. </span><span class="si">{</span><span class="n">prevs_hat</span><span class="o">.</span><span class="n">shape</span><span class="si">}</span><span class="s1">&#39;</span>
    <span class="k">return</span> <span class="nb">abs</span><span class="p">(</span><span class="n">prevs_hat</span> <span class="o">-</span> <span class="n">prevs</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">axis</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">prevs</span><span class="o">.</span><span class="n">min</span><span class="p">(</span><span class="n">axis</span><span class="o">=-</span><span class="mi">1</span><span class="p">)))</span></div>


<div class="viewcode-block" id="mnae"><a class="viewcode-back" href="../../quapy.html#quapy.error.mnae">[docs]</a><span class="k">def</span> <span class="nf">mnae</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Computes the mean normalized absolute error (see :meth:`quapy.error.nae`) across the sample pairs.</span>

<span class="sd">    :param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values</span>
<span class="sd">    :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted</span>
<span class="sd">        prevalence values</span>
<span class="sd">    :return: mean normalized absolute error</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">return</span> <span class="n">nae</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">)</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span></div>


<div class="viewcode-block" id="mse"><a class="viewcode-back" href="../../quapy.html#quapy.error.mse">[docs]</a><span class="k">def</span> <span class="nf">mse</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Computes the mean squared error (see :meth:`quapy.error.se`) across the sample pairs.</span>

<span class="sd">    :param prevs: array-like of shape `(n_samples, n_classes,)` with the</span>
<span class="sd">        true prevalence values</span>
<span class="sd">    :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the</span>
<span class="sd">        predicted prevalence values</span>
<span class="sd">    :return: mean squared error</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">return</span> <span class="n">se</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">)</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span></div>


<div class="viewcode-block" id="se"><a class="viewcode-back" href="../../quapy.html#quapy.error.se">[docs]</a><span class="k">def</span> <span class="nf">se</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Computes the squared error between the two prevalence vectors.</span>
<span class="sd">     Squared error between two prevalence vectors :math:`p` and :math:`\\hat{p}`  is computed as</span>
<span class="sd">     :math:`SE(p,\\hat{p})=\\frac{1}{|\\mathcal{Y}|}\\sum_{y\\in \\mathcal{Y}}(\\hat{p}(y)-p(y))^2`,</span>
<span class="sd">     where</span>
<span class="sd">     :math:`\\mathcal{Y}` are the classes of interest.</span>

<span class="sd">    :param prevs: array-like of shape `(n_classes,)` with the true prevalence values</span>
<span class="sd">    :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values</span>
<span class="sd">    :return: absolute error</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">return</span> <span class="p">((</span><span class="n">prevs_hat</span> <span class="o">-</span> <span class="n">prevs</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">axis</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span></div>


<div class="viewcode-block" id="mkld"><a class="viewcode-back" href="../../quapy.html#quapy.error.mkld">[docs]</a><span class="k">def</span> <span class="nf">mkld</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Computes the mean Kullback-Leibler divergence (see :meth:`quapy.error.kld`) across the</span>
<span class="sd">    sample pairs. The distributions are smoothed using the `eps` factor</span>
<span class="sd">    (see :meth:`quapy.error.smooth`).</span>

<span class="sd">    :param prevs: array-like of shape `(n_samples, n_classes,)` with the true</span>
<span class="sd">        prevalence values</span>
<span class="sd">    :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted</span>
<span class="sd">        prevalence values</span>
<span class="sd">    :param eps: smoothing factor. KLD is not defined in cases in which the distributions contain</span>
<span class="sd">        zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size.</span>
<span class="sd">        If `eps=None`, the sample size will be taken from the environment variable `SAMPLE_SIZE`</span>
<span class="sd">        (which has thus to be set beforehand).</span>
<span class="sd">    :return: mean Kullback-Leibler distribution</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">return</span> <span class="n">kld</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span></div>


<div class="viewcode-block" id="kld"><a class="viewcode-back" href="../../quapy.html#quapy.error.kld">[docs]</a><span class="k">def</span> <span class="nf">kld</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Computes the Kullback-Leibler divergence between the two prevalence distributions.</span>
<span class="sd">     Kullback-Leibler divergence between two prevalence distributions :math:`p` and :math:`\\hat{p}`</span>
<span class="sd">     is computed as</span>
<span class="sd">     :math:`KLD(p,\\hat{p})=D_{KL}(p||\\hat{p})=</span>
<span class="sd">     \\sum_{y\\in \\mathcal{Y}} p(y)\\log\\frac{p(y)}{\\hat{p}(y)}`,</span>
<span class="sd">     where :math:`\\mathcal{Y}` are the classes of interest.</span>
<span class="sd">     The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`).</span>

<span class="sd">    :param prevs: array-like of shape `(n_classes,)` with the true prevalence values</span>
<span class="sd">    :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values</span>
<span class="sd">    :param eps: smoothing factor. KLD is not defined in cases in which the distributions contain</span>
<span class="sd">        zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size.</span>
<span class="sd">        If `eps=None`, the sample size will be taken from the environment variable `SAMPLE_SIZE`</span>
<span class="sd">        (which has thus to be set beforehand).</span>
<span class="sd">    :return: Kullback-Leibler divergence between the two distributions</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">eps</span> <span class="o">=</span> <span class="n">__check_eps</span><span class="p">(</span><span class="n">eps</span><span class="p">)</span>
    <span class="n">smooth_prevs</span> <span class="o">=</span> <span class="n">prevs</span> <span class="o">+</span> <span class="n">eps</span>
    <span class="n">smooth_prevs_hat</span> <span class="o">=</span> <span class="n">prevs_hat</span> <span class="o">+</span> <span class="n">eps</span>
    <span class="k">return</span> <span class="p">(</span><span class="n">smooth_prevs</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">smooth_prevs</span><span class="o">/</span><span class="n">smooth_prevs_hat</span><span class="p">))</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">axis</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span></div>


<div class="viewcode-block" id="mnkld"><a class="viewcode-back" href="../../quapy.html#quapy.error.mnkld">[docs]</a><span class="k">def</span> <span class="nf">mnkld</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Computes the mean Normalized Kullback-Leibler divergence (see :meth:`quapy.error.nkld`)</span>
<span class="sd">    across the sample pairs. The distributions are smoothed using the `eps` factor</span>
<span class="sd">    (see :meth:`quapy.error.smooth`).</span>

<span class="sd">    :param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values</span>
<span class="sd">    :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted</span>
<span class="sd">        prevalence values</span>
<span class="sd">    :param eps: smoothing factor. NKLD is not defined in cases in which the distributions contain</span>
<span class="sd">        zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size.</span>
<span class="sd">        If `eps=None`, the sample size will be taken from the environment variable `SAMPLE_SIZE`</span>
<span class="sd">        (which has thus to be set beforehand).</span>
<span class="sd">    :return: mean Normalized Kullback-Leibler distribution</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">return</span> <span class="n">nkld</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span></div>


<div class="viewcode-block" id="nkld"><a class="viewcode-back" href="../../quapy.html#quapy.error.nkld">[docs]</a><span class="k">def</span> <span class="nf">nkld</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Computes the Normalized Kullback-Leibler divergence between the two prevalence distributions.</span>
<span class="sd">     Normalized Kullback-Leibler divergence between two prevalence distributions :math:`p` and</span>
<span class="sd">     :math:`\\hat{p}` is computed as</span>
<span class="sd">     math:`NKLD(p,\\hat{p}) = 2\\frac{e^{KLD(p,\\hat{p})}}{e^{KLD(p,\\hat{p})}+1}-1`,</span>
<span class="sd">     where</span>
<span class="sd">     :math:`\\mathcal{Y}` are the classes of interest.</span>
<span class="sd">     The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`).</span>

<span class="sd">    :param prevs: array-like of shape `(n_classes,)` with the true prevalence values</span>
<span class="sd">    :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values</span>
<span class="sd">    :param eps: smoothing factor. NKLD is not defined in cases in which the distributions</span>
<span class="sd">        contain zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample</span>
<span class="sd">        size. If `eps=None`, the sample size will be taken from the environment variable</span>
<span class="sd">        `SAMPLE_SIZE` (which has thus to be set beforehand).</span>
<span class="sd">    :return: Normalized Kullback-Leibler divergence between the two distributions</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">ekld</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">kld</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">,</span> <span class="n">eps</span><span class="p">))</span>
    <span class="k">return</span> <span class="mf">2.</span> <span class="o">*</span> <span class="n">ekld</span> <span class="o">/</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="n">ekld</span><span class="p">)</span> <span class="o">-</span> <span class="mf">1.</span></div>


<div class="viewcode-block" id="mrae"><a class="viewcode-back" href="../../quapy.html#quapy.error.mrae">[docs]</a><span class="k">def</span> <span class="nf">mrae</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Computes the mean relative absolute error (see :meth:`quapy.error.rae`) across</span>
<span class="sd">    the sample pairs. The distributions are smoothed using the `eps` factor (see</span>
<span class="sd">    :meth:`quapy.error.smooth`).</span>

<span class="sd">    :param prevs: array-like of shape `(n_samples, n_classes,)` with the true</span>
<span class="sd">        prevalence values</span>
<span class="sd">    :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted</span>
<span class="sd">        prevalence values</span>
<span class="sd">    :param eps: smoothing factor. `mrae` is not defined in cases in which the true</span>
<span class="sd">        distribution contains zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`,</span>
<span class="sd">        with :math:`T` the sample size. If `eps=None`, the sample size will be taken from</span>
<span class="sd">        the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand).</span>
<span class="sd">    :return: mean relative absolute error</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">return</span> <span class="n">rae</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span></div>


<div class="viewcode-block" id="rae"><a class="viewcode-back" href="../../quapy.html#quapy.error.rae">[docs]</a><span class="k">def</span> <span class="nf">rae</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Computes the absolute relative error between the two prevalence vectors.</span>
<span class="sd">     Relative absolute error between two prevalence vectors :math:`p` and :math:`\\hat{p}`</span>
<span class="sd">     is computed as</span>
<span class="sd">     :math:`RAE(p,\\hat{p})=</span>
<span class="sd">     \\frac{1}{|\\mathcal{Y}|}\\sum_{y\\in \\mathcal{Y}}\\frac{|\\hat{p}(y)-p(y)|}{p(y)}`,</span>
<span class="sd">     where :math:`\\mathcal{Y}` are the classes of interest.</span>
<span class="sd">     The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`).</span>

<span class="sd">    :param prevs: array-like of shape `(n_classes,)` with the true prevalence values</span>
<span class="sd">    :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values</span>
<span class="sd">    :param eps: smoothing factor. `rae` is not defined in cases in which the true distribution</span>
<span class="sd">        contains zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the</span>
<span class="sd">        sample size. If `eps=None`, the sample size will be taken from the environment variable</span>
<span class="sd">        `SAMPLE_SIZE` (which has thus to be set beforehand).</span>
<span class="sd">    :return: relative absolute error</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">eps</span> <span class="o">=</span> <span class="n">__check_eps</span><span class="p">(</span><span class="n">eps</span><span class="p">)</span>
    <span class="n">prevs</span> <span class="o">=</span> <span class="n">smooth</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span>
    <span class="n">prevs_hat</span> <span class="o">=</span> <span class="n">smooth</span><span class="p">(</span><span class="n">prevs_hat</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span>
    <span class="k">return</span> <span class="p">(</span><span class="nb">abs</span><span class="p">(</span><span class="n">prevs</span> <span class="o">-</span> <span class="n">prevs_hat</span><span class="p">)</span> <span class="o">/</span> <span class="n">prevs</span><span class="p">)</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">axis</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span></div>


<div class="viewcode-block" id="nrae"><a class="viewcode-back" href="../../quapy.html#quapy.error.nrae">[docs]</a><span class="k">def</span> <span class="nf">nrae</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Computes the normalized absolute relative error between the two prevalence vectors.</span>
<span class="sd">     Relative absolute error between two prevalence vectors :math:`p` and :math:`\\hat{p}`</span>
<span class="sd">     is computed as</span>
<span class="sd">     :math:`NRAE(p,\\hat{p})= \\frac{RAE(p,\\hat{p})}{z_{RAE}}`,</span>
<span class="sd">     where</span>
<span class="sd">     :math:`z_{RAE} = \\frac{|\\mathcal{Y}|-1+\\frac{1-\\min_{y\\in \\mathcal{Y}} p(y)}{\\min_{y\\in \\mathcal{Y}} p(y)}}{|\\mathcal{Y}|}`</span>
<span class="sd">     and :math:`\\mathcal{Y}` are the classes of interest.</span>
<span class="sd">     The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`).</span>

<span class="sd">    :param prevs: array-like of shape `(n_classes,)` with the true prevalence values</span>
<span class="sd">    :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values</span>
<span class="sd">    :param eps: smoothing factor. `nrae` is not defined in cases in which the true distribution</span>
<span class="sd">        contains zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the</span>
<span class="sd">        sample size. If `eps=None`, the sample size will be taken from the environment variable</span>
<span class="sd">        `SAMPLE_SIZE` (which has thus to be set beforehand).</span>
<span class="sd">    :return: normalized relative absolute error</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">eps</span> <span class="o">=</span> <span class="n">__check_eps</span><span class="p">(</span><span class="n">eps</span><span class="p">)</span>
    <span class="n">prevs</span> <span class="o">=</span> <span class="n">smooth</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span>
    <span class="n">prevs_hat</span> <span class="o">=</span> <span class="n">smooth</span><span class="p">(</span><span class="n">prevs_hat</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span>
    <span class="n">min_p</span> <span class="o">=</span> <span class="n">prevs</span><span class="o">.</span><span class="n">min</span><span class="p">(</span><span class="n">axis</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
    <span class="k">return</span> <span class="p">(</span><span class="nb">abs</span><span class="p">(</span><span class="n">prevs</span> <span class="o">-</span> <span class="n">prevs_hat</span><span class="p">)</span> <span class="o">/</span> <span class="n">prevs</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">axis</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span><span class="o">/</span><span class="p">(</span><span class="n">prevs</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">-</span><span class="mi">1</span><span class="o">+</span><span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">min_p</span><span class="p">)</span><span class="o">/</span><span class="n">min_p</span><span class="p">)</span></div>


<div class="viewcode-block" id="mnrae"><a class="viewcode-back" href="../../quapy.html#quapy.error.mnrae">[docs]</a><span class="k">def</span> <span class="nf">mnrae</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Computes the mean normalized relative absolute error (see :meth:`quapy.error.nrae`) across</span>
<span class="sd">    the sample pairs. The distributions are smoothed using the `eps` factor (see</span>
<span class="sd">    :meth:`quapy.error.smooth`).</span>

<span class="sd">    :param prevs: array-like of shape `(n_samples, n_classes,)` with the true</span>
<span class="sd">        prevalence values</span>
<span class="sd">    :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted</span>
<span class="sd">        prevalence values</span>
<span class="sd">    :param eps: smoothing factor. `mnrae` is not defined in cases in which the true</span>
<span class="sd">        distribution contains zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`,</span>
<span class="sd">        with :math:`T` the sample size. If `eps=None`, the sample size will be taken from</span>
<span class="sd">        the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand).</span>
<span class="sd">    :return: mean normalized relative absolute error</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">return</span> <span class="n">nrae</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">prevs_hat</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span></div>


<div class="viewcode-block" id="smooth"><a class="viewcode-back" href="../../quapy.html#quapy.error.smooth">[docs]</a><span class="k">def</span> <span class="nf">smooth</span><span class="p">(</span><span class="n">prevs</span><span class="p">,</span> <span class="n">eps</span><span class="p">):</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot; Smooths a prevalence distribution with :math:`\\epsilon` (`eps`) as:</span>
<span class="sd">    :math:`\\underline{p}(y)=\\frac{\\epsilon+p(y)}{\\epsilon|\\mathcal{Y}|+</span>
<span class="sd">    \\displaystyle\\sum_{y\\in \\mathcal{Y}}p(y)}`</span>

<span class="sd">    :param prevs: array-like of shape `(n_classes,)` with the true prevalence values</span>
<span class="sd">    :param eps: smoothing factor</span>
<span class="sd">    :return: array-like of shape `(n_classes,)` with the smoothed distribution</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">n_classes</span> <span class="o">=</span> <span class="n">prevs</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
    <span class="k">return</span> <span class="p">(</span><span class="n">prevs</span> <span class="o">+</span> <span class="n">eps</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">eps</span> <span class="o">*</span> <span class="n">n_classes</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span></div>


<span class="k">def</span> <span class="nf">__check_eps</span><span class="p">(</span><span class="n">eps</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
    <span class="k">if</span> <span class="n">eps</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">sample_size</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s1">&#39;SAMPLE_SIZE&#39;</span><span class="p">]</span>
        <span class="k">if</span> <span class="n">sample_size</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
            <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">&#39;eps was not defined, and qp.environ[&quot;SAMPLE_SIZE&quot;] was not set&#39;</span><span class="p">)</span>
        <span class="n">eps</span> <span class="o">=</span> <span class="mf">1.</span> <span class="o">/</span> <span class="p">(</span><span class="mf">2.</span> <span class="o">*</span> <span class="n">sample_size</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">eps</span>


<span class="n">CLASSIFICATION_ERROR</span> <span class="o">=</span> <span class="p">{</span><span class="n">f1e</span><span class="p">,</span> <span class="n">acce</span><span class="p">}</span>
<span class="n">QUANTIFICATION_ERROR</span> <span class="o">=</span> <span class="p">{</span><span class="n">mae</span><span class="p">,</span> <span class="n">mnae</span><span class="p">,</span> <span class="n">mrae</span><span class="p">,</span> <span class="n">mnrae</span><span class="p">,</span> <span class="n">mse</span><span class="p">,</span> <span class="n">mkld</span><span class="p">,</span> <span class="n">mnkld</span><span class="p">}</span>
<span class="n">QUANTIFICATION_ERROR_SINGLE</span> <span class="o">=</span> <span class="p">{</span><span class="n">ae</span><span class="p">,</span> <span class="n">nae</span><span class="p">,</span> <span class="n">rae</span><span class="p">,</span> <span class="n">nrae</span><span class="p">,</span> <span class="n">se</span><span class="p">,</span> <span class="n">kld</span><span class="p">,</span> <span class="n">nkld</span><span class="p">}</span>
<span class="n">QUANTIFICATION_ERROR_SMOOTH</span> <span class="o">=</span> <span class="p">{</span><span class="n">kld</span><span class="p">,</span> <span class="n">nkld</span><span class="p">,</span> <span class="n">rae</span><span class="p">,</span> <span class="n">nrae</span><span class="p">,</span> <span class="n">mkld</span><span class="p">,</span> <span class="n">mnkld</span><span class="p">,</span> <span class="n">mrae</span><span class="p">}</span>
<span class="n">CLASSIFICATION_ERROR_NAMES</span> <span class="o">=</span> <span class="p">{</span><span class="n">func</span><span class="o">.</span><span class="vm">__name__</span> <span class="k">for</span> <span class="n">func</span> <span class="ow">in</span> <span class="n">CLASSIFICATION_ERROR</span><span class="p">}</span>
<span class="n">QUANTIFICATION_ERROR_NAMES</span> <span class="o">=</span> <span class="p">{</span><span class="n">func</span><span class="o">.</span><span class="vm">__name__</span> <span class="k">for</span> <span class="n">func</span> <span class="ow">in</span> <span class="n">QUANTIFICATION_ERROR</span><span class="p">}</span>
<span class="n">QUANTIFICATION_ERROR_SINGLE_NAMES</span> <span class="o">=</span> <span class="p">{</span><span class="n">func</span><span class="o">.</span><span class="vm">__name__</span> <span class="k">for</span> <span class="n">func</span> <span class="ow">in</span> <span class="n">QUANTIFICATION_ERROR_SINGLE</span><span class="p">}</span>
<span class="n">QUANTIFICATION_ERROR_SMOOTH_NAMES</span> <span class="o">=</span> <span class="p">{</span><span class="n">func</span><span class="o">.</span><span class="vm">__name__</span> <span class="k">for</span> <span class="n">func</span> <span class="ow">in</span> <span class="n">QUANTIFICATION_ERROR_SMOOTH</span><span class="p">}</span>
<span class="n">ERROR_NAMES</span> <span class="o">=</span> \
    <span class="n">CLASSIFICATION_ERROR_NAMES</span> <span class="o">|</span> <span class="n">QUANTIFICATION_ERROR_NAMES</span> <span class="o">|</span> <span class="n">QUANTIFICATION_ERROR_SINGLE_NAMES</span>

<span class="n">f1_error</span> <span class="o">=</span> <span class="n">f1e</span>
<span class="n">acc_error</span> <span class="o">=</span> <span class="n">acce</span>
<span class="n">mean_absolute_error</span> <span class="o">=</span> <span class="n">mae</span>
<span class="n">absolute_error</span> <span class="o">=</span> <span class="n">ae</span>
<span class="n">mean_relative_absolute_error</span> <span class="o">=</span> <span class="n">mrae</span>
<span class="n">relative_absolute_error</span> <span class="o">=</span> <span class="n">rae</span>
<span class="n">normalized_absolute_error</span> <span class="o">=</span> <span class="n">nae</span>
<span class="n">normalized_relative_absolute_error</span> <span class="o">=</span> <span class="n">nrae</span>
<span class="n">mean_normalized_absolute_error</span> <span class="o">=</span> <span class="n">mnae</span>
<span class="n">mean_normalized_relative_absolute_error</span> <span class="o">=</span> <span class="n">mnrae</span>
</pre></div>

           </div>
          </div>
          <footer>

  <hr/>

  <div role="contentinfo">
    <p>&#169; Copyright 2024, Alejandro Moreo.</p>
  </div>

  Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
    <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
    provided by <a href="https://readthedocs.org">Read the Docs</a>.
   

</footer>
        </div>
      </div>
    </section>
  </div>
  <script>
      jQuery(function () {
          SphinxRtdTheme.Navigation.enable(true);
      });
  </script> 

</body>
</html>