import pickle import os import pandas as pd from distribution_matching.commons import METHODS, new_method, show_results import quapy as qp from quapy.model_selection import GridSearchQ from quapy.protocol import UPP SEED=1 if __name__ == '__main__': qp.environ['SAMPLE_SIZE'] = 100 qp.environ['N_JOBS'] = -1 n_bags_val = 250 n_bags_test = 1000 for optim in ['mae', 'mrae']: result_dir = f'results/tweet/{optim}' os.makedirs(result_dir, exist_ok=True) for method in METHODS: print('Init method', method) global_result_path = f'{result_dir}/{method}' if not os.path.exists(global_result_path+'.csv'): with open(global_result_path+'.csv', 'wt') as csv: csv.write(f'Method\tDataset\tMAE\tMRAE\tKLD\n') with open(global_result_path+'.csv', 'at') as csv: # four semeval dataset share the training, so it is useless to optimize hyperparameters four times; # this variable controls that the mod sel has already been done, and skip this otherwise semeval_trained = False for dataset in qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST: print('init', dataset) local_result_path = global_result_path + '_' + dataset if os.path.exists(local_result_path+'.dataframe'): print(f'result file {local_result_path}.dataframe already exist; skipping') continue with qp.util.temp_seed(SEED): is_semeval = dataset.startswith('semeval') if not is_semeval or not semeval_trained: param_grid, quantifier = new_method(method) # model selection data = qp.datasets.fetch_twitter(dataset, min_df=3, pickle=True, for_model_selection=True) protocol = UPP(data.test, repeats=n_bags_val) modsel = GridSearchQ(quantifier, param_grid, protocol, refit=False, n_jobs=-1, verbose=1, error=optim) modsel.fit(data.training) print(f'best params {modsel.best_params_}') print(f'best score {modsel.best_score_}') pickle.dump( (modsel.best_params_, modsel.best_score_,), open(f'{local_result_path}.hyper.pkl', 'wb'), pickle.HIGHEST_PROTOCOL) quantifier = modsel.best_model() if is_semeval: semeval_trained = True else: print(f'model selection for {dataset} already done; skipping') data = qp.datasets.fetch_twitter(dataset, min_df=3, pickle=True, for_model_selection=False) quantifier.fit(data.training) protocol = UPP(data.test, repeats=n_bags_test) report = qp.evaluation.evaluation_report(quantifier, protocol, error_metrics=['mae', 'mrae', 'kld'], verbose=True) report.to_csv(f'{local_result_path}.dataframe') means = report.mean() csv.write(f'{method}\t{data.name}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\n') csv.flush() show_results(global_result_path)