import numpy as np from sklearn.linear_model import LogisticRegression import os import quapy as qp from distribution_matching.commons import show_results from distribution_matching.method.method_kdey import KDEy from quapy.method.aggregative import DistributionMatching SEED=1 def task(val): print('job-init', val) train, val_gen, test_gen = qp.datasets.fetch_lequa2022('T1B') with qp.util.temp_seed(SEED): if method=='KDEy-ML': quantifier = KDEy(LogisticRegression(), target='max_likelihood', val_split=10, bandwidth=val) elif method == 'DM-HD': quantifier = DistributionMatching(LogisticRegression(), val_split=10, nbins=val, divergence='HD') quantifier.fit(train) report = qp.evaluation.evaluation_report( quantifier, protocol=test_gen, error_metrics=['mae', 'mrae', 'kld'], verbose=True) return report if __name__ == '__main__': qp.environ['SAMPLE_SIZE'] = qp.datasets.LEQUA2022_SAMPLE_SIZE['T1B'] qp.environ['N_JOBS'] = -1 result_dir = f'results/lequa/T1B/sensibility' os.makedirs(result_dir, exist_ok=True) for method, param, grid in [ ('KDEy-ML', 'Bandwidth', np.linspace(0.01, 0.2, 20)), ('DM-HD', 'nbins', list(range(2, 10)) + list(range(10, 34, 2))) ]: global_result_path = f'{result_dir}/{method}' if not os.path.exists(global_result_path+'.csv'): with open(global_result_path+'.csv', 'wt') as csv: csv.write(f'Method\tDataset\t{param}\tMAE\tMRAE\tKLD\n') reports = qp.util.parallel(task, grid, n_jobs=-1) with open(global_result_path + '.csv', 'at') as csv: for val, report in zip(grid, reports): means = report.mean() local_result_path = global_result_path + '_T1B' + (f'_{val:.3f}' if isinstance(val, float) else f'{val}') report.to_csv(f'{local_result_path}.dataframe') csv.write(f'{method}\tLeQua-T1B\t{val}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\n') csv.flush() show_results(global_result_path)