import pickle import numpy as np from sklearn.linear_model import LogisticRegression from tqdm import tqdm import pandas as pd import quapy as qp from quapy.data import LabelledCollection from quapy.method.aggregative import * import quapy.functional as F from data import * import os import constants from sklearn.decomposition import TruncatedSVD # LeQua official baselines for task T1A (Binary/Vector) # ===================================================== predictions_path = os.path.join('predictions', 'T1A') os.makedirs(predictions_path, exist_ok=True) models_path = os.path.join('models', 'T1A') os.makedirs(models_path, exist_ok=True) pathT1A = './data/T1A/public' T1A_devvectors_path = os.path.join(pathT1A, 'dev_vectors') T1A_devprevalence_path = os.path.join(pathT1A, 'dev_prevalences.csv') T1A_trainpath = os.path.join(pathT1A, 'training_vectors.txt') train = LabelledCollection.load(T1A_trainpath, load_binary_vectors) nF = train.instances.shape[1] svd = TruncatedSVD(n_components=300) train.instances = svd.fit_transform(train.instances) qp.environ['SAMPLE_SIZE'] = constants.T1A_SAMPLE_SIZE print(f'number of classes: {len(train.classes_)}') print(f'number of training documents: {len(train)}') print(f'training prevalence: {F.strprev(train.prevalence())}') print(f'training matrix shape: {train.instances.shape}') true_prevalence = ResultSubmission.load(T1A_devprevalence_path) for quantifier in [CC, ACC, PCC, PACC, EMQ, HDy]: # classifier = CalibratedClassifierCV(LogisticRegression()) classifier = LogisticRegression() model = quantifier(classifier).fit(train) quantifier_name = model.__class__.__name__ predictions = ResultSubmission(categories=['negative', 'positive']) for samplename, sample in tqdm(gen_load_samples_T1(T1A_devvectors_path, nF), desc=quantifier_name, total=len(true_prevalence)): sample = svd.transform(sample) predictions.add(samplename, model.quantify(sample)) predictions.dump(os.path.join(predictions_path, quantifier_name + '.svd.csv')) pickle.dump(model, open(os.path.join(models_path, quantifier_name+'.svd.pkl'), 'wb'), protocol=pickle.HIGHEST_PROTOCOL) mae, mrae = evaluate_submission(true_prevalence, predictions) print(f'{quantifier_name} mae={mae:.3f} mrae={mrae:.3f}') """ validation CC 0.1862 1.9587 ACC 0.0394 0.2669 PCC 0.1789 2.1383 PACC 0.0354 0.1587 EMQ 0.0224 0.0960 HDy 0.0467 0.2121 """