""" This example shows how to use Bayesian quantification (https://arxiv.org/abs/2302.09159), which is suitable for low-data situations and when the uncertainty of the prevalence estimate is of interest. For this, we will need to install extra dependencies: ``` $ pip install quapy[bayesian] ``` Running the script via: ``` $ python examples/bayesian_quantification.py ``` will produce a plot `bayesian_quantification.pdf`. Due to a low sample size and the fact that classes 2 and 3 are hard to distinguish, it is hard to estimate the proportions accurately, what is visible by looking at the posterior samples, showing large uncertainty. """ from dataclasses import dataclass import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestClassifier from quapy.method.aggregative import BayesianCC, ACC, PACC from quapy.data import LabelledCollection FIGURE_PATH = "bayesian_quantification.pdf" @dataclass class SimulatedData: n_classes: int X_train: np.ndarray Y_train: np.ndarray X_test: np.ndarray Y_test: np.ndarray def simulate_data(rng) -> SimulatedData: """Generates a simulated data set with three classes.""" cov = np.eye(2) n_train = [400, 400, 400] n_test = [40, 25, 15] mus = [np.zeros(2), np.array([1, 1.5]), np.array([1.5, 1])] X_train = np.concatenate([ rng.multivariate_normal(mus[i], cov, size=n_train[i]) for i in range(3) ]) X_test = np.concatenate([ rng.multivariate_normal(mus[i], cov, size=n_test[i]) for i in range(3) ]) Y_train = np.concatenate([[i] * n for i, n in enumerate(n_train)]) Y_test = np.concatenate([[i] * n for i, n in enumerate(n_test)]) return SimulatedData( n_classes=3, X_train=X_train, X_test=X_test, Y_train=Y_train, Y_test=Y_test, ) def plot_simulated_data(axs, data: SimulatedData) -> None: """Plots a simulated data set. Args: axs: a list of three `plt.Axes` objects, on which the samples will be plotted. data: the simulated data set. """ xlim = ( -0.3 + min(data.X_train[:, 0].min(), data.X_test[:, 0].min()), 0.3 + max(data.X_train[:, 0].max(), data.X_test[:, 0].max()) ) ylim = ( -0.3 + min(data.X_train[:, 1].min(), data.X_test[:, 1].min()), 0.3 + max(data.X_train[:, 1].max(), data.X_test[:, 1].max()) ) for ax in axs: ax.set_xlabel("$X_1$") ax.set_ylabel("$X_2$") ax.set_aspect("equal") ax.set_xlim(*xlim) ax.set_ylim(*ylim) ax = axs[0] ax.set_title("Training set") for i in range(data.n_classes): ax.scatter(data.X_train[data.Y_train == i, 0], data.X_train[data.Y_train == i, 1], c=f"C{i}", s=3, rasterized=True) ax = axs[1] ax.set_title("Test set\n(with labels)") for i in range(data.n_classes): ax.scatter(data.X_test[data.Y_test == i, 0], data.X_test[data.Y_test == i, 1], c=f"C{i}", s=3, rasterized=True) ax = axs[2] ax.set_title("Test set\n(as observed)") ax.scatter(data.X_test[:, 0], data.X_test[:, 1], c="C5", s=3, rasterized=True) def get_random_forest() -> RandomForestClassifier: return RandomForestClassifier(n_estimators=10, random_state=5) def train_and_plot_bayesian_quantification(ax: plt.Axes, training: LabelledCollection, test: np.ndarray, n_classes: int) -> None: quantifier = BayesianCC(classifier=get_random_forest()) quantifier.fit(training) # Obtain mean prediction mean_prediction = quantifier.quantify(test) x_ax = np.arange(n_classes) ax.plot(x_ax, mean_prediction, c="salmon", linewidth=2, linestyle=":", label="Bayesian") # Obtain individual samples samples = quantifier.get_prevalence_samples() for sample in samples[::5, :]: ax.plot(x_ax, sample, c="salmon", alpha=0.1, linewidth=0.3, rasterized=True) def _get_estimate(estimator_class, training: LabelledCollection, test: np.ndarray) -> None: estimator = estimator_class(get_random_forest()) estimator.fit(training) return estimator.quantify(test) def train_and_plot_acc(ax: plt.Axes, training: LabelledCollection, test: np.ndarray, n_classes: int) -> None: estimate = _get_estimate(ACC, training, test) ax.plot(np.arange(n_classes), estimate, c="darkblue", linewidth=2, linestyle=":", label="ACC") def train_and_plot_pacc(ax: plt.Axes, training: LabelledCollection, test: np.ndarray, n_classes: int) -> None: estimate = _get_estimate(PACC, training, test) ax.plot(np.arange(n_classes), estimate, c="limegreen", linewidth=2, linestyle=":", label="PACC") def plot_true_proportions(ax: plt.Axes, test_labels: np.ndarray, n_classes: int) -> None: counts = np.bincount(test_labels, minlength=n_classes) proportion = counts / counts.sum() x_ax = np.arange(n_classes) ax.plot(x_ax, proportion, c="black", linewidth=2, label="True") ax.set_xlabel("Class") ax.set_ylabel("Prevalence") ax.set_xticks(x_ax, x_ax + 1) ax.set_yticks([0, 0.25, 0.5, 0.75, 1.0]) ax.set_xlim(-0.1, n_classes - 0.9) ax.set_ylim(-0.01, 1.01) def main() -> None: # --- Simulate data --- rng = np.random.default_rng(42) data = simulate_data(rng) # --- Plot simulated data --- fig, axs = plt.subplots(1, 4, figsize=(13, 3), dpi=300) for ax in axs: ax.spines[['top', 'right']].set_visible(False) plot_simulated_data(axs[:3], data) # --- Plot quantification results --- ax = axs[3] plot_true_proportions(ax, test_labels=data.Y_test, n_classes=data.n_classes) training = LabelledCollection(data.X_train, data.Y_train) train_and_plot_acc(ax, training=training, test=data.X_test, n_classes=data.n_classes) train_and_plot_pacc(ax, training=training, test=data.X_test, n_classes=data.n_classes) train_and_plot_bayesian_quantification(ax=ax, training=training, test=data.X_test, n_classes=data.n_classes) ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left', frameon=False) fig.tight_layout() fig.savefig(FIGURE_PATH) if __name__ == '__main__': main()