import mord import numpy as np from scipy.sparse import issparse from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.decomposition import TruncatedSVD from sklearn.linear_model import Ridge from sklearn.svm import LinearSVR from sklearn.utils.class_weight import compute_class_weight from statsmodels.miscmodels.ordinal_model import OrderedModel class OrderedLogisticRegression: def __init__(self, model='logit'): assert model in ['logit', 'probit'], 'unknown ordered model, valid ones are logit or probit' self.model = model def fit(self, X, y): if issparse(X): self.svd = TruncatedSVD(500) X = self.svd.fit_transform(X) self.learner = OrderedModel(y, X, distr=self.model) self.res_prob = self.learner.fit(method='bfgs', disp=False, skip_hessian=True) def predict(self, X): prob = self.predict_proba(X) return np.argmax(prob, axis=1) def predict_proba(self, X): if issparse(X): assert hasattr(self, 'svd'), \ 'X matrix in predict is sparse, but the method has not been fit with sparse type' X = self.svd.transform(X) return self.res_prob.model.predict(self.res_prob.params, exog=X) class LAD(BaseEstimator, ClassifierMixin): def __init__(self, C=1.0, class_weight=None): self.C = C self.class_weight = class_weight def fit(self, X, y, sample_weight=None): self.regressor = LinearSVR(C=self.C) # self.regressor = SVR() # self.regressor = Ridge(normalize=True) classes = sorted(np.unique(y)) self.nclasses = len(classes) if self.class_weight == 'balanced': class_weight = compute_class_weight('balanced', classes=classes, y=y) sample_weight = class_weight[y] self.regressor.fit(X, y, sample_weight=sample_weight) return self def predict(self, X): r = self.regressor.predict(X) c = np.round(r) c[c<0]=0 c[c>(self.nclasses-1)]=self.nclasses-1 return c.astype(np.int) # def predict_proba(self, X): # r = self.regressor.predict(X) # nC = len(self.classes_) # r = np.clip(r, 0, nC - 1) # dists = np.abs(np.tile(np.arange(nC), (len(r), 1)) - r.reshape(-1,1)) # invdist = 1 - dists # invdist[invdist < 0] = 0 # return invdist def decision_function(self, X): r = self.regressor.predict(X) nC = len(self.classes_) dists = np.abs(np.tile(np.arange(nC), (len(r), 1)) - r.reshape(-1,1)) invdist = 1 - dists return invdist @property def classes_(self): return np.arange(self.nclasses) def get_params(self, deep=True): return {'C':self.C, 'class_weight': self.class_weight} def set_params(self, **params): self.C = params['C'] self.class_weight = params['class_weight'] class OrdinalRidge(BaseEstimator, ClassifierMixin): def __init__(self, alpha=1.0, class_weight=None, normalize=False): self.alpha = alpha self.class_weight = class_weight self.normalize = normalize def fit(self, X, y, sample_weight=None): self.regressor = Ridge(alpha=self.alpha, normalize=self.normalize) classes = sorted(np.unique(y)) self.nclasses = len(classes) if self.class_weight == 'balanced': class_weight = compute_class_weight('balanced', classes=classes, y=y) sample_weight = class_weight[y] self.regressor.fit(X, y, sample_weight=sample_weight) return self def predict(self, X): r = self.regressor.predict(X) c = np.round(r) c[c<0]=0 c[c>(self.nclasses-1)]=self.nclasses-1 return c.astype(np.int) # def predict_proba(self, X): # r = self.regressor.predict(X) # nC = len(self.classes_) # r = np.clip(r, 0, nC - 1) # dists = np.abs(np.tile(np.arange(nC), (len(r), 1)) - r.reshape(-1,1)) # invdist = 1 - dists # invdist[invdist < 0] = 0 # return invdist def decision_function(self, X): r = self.regressor.predict(X) nC = len(self.classes_) dists = np.abs(np.tile(np.arange(nC), (len(r), 1)) - r.reshape(-1,1)) invdist = 1 - dists return invdist @property def classes_(self): return np.arange(self.nclasses) def get_params(self, deep=True): return {'alpha':self.alpha, 'class_weight': self.class_weight, 'normalize': self.normalize} def set_params(self, **params): self.alpha = params['alpha'] self.class_weight = params['class_weight'] self.normalize = params['normalize'] # with order-aware classifiers # threshold-based ordinal regression (see https://pythonhosted.org/mord/) class LogisticAT(mord.LogisticAT): def __init__(self, alpha=1.0, class_weight=None): assert class_weight in [None, 'balanced'], 'unexpected value for class_weight' self.class_weight = class_weight super(LogisticAT, self).__init__(alpha=alpha) def fit(self, X, y, sample_weight=None): if self.class_weight == 'balanced': classes = sorted(np.unique(y)) class_weight = compute_class_weight('balanced', classes=classes, y=y) sample_weight = class_weight[y] return super(LogisticAT, self).fit(X, y, sample_weight=sample_weight) class LogisticSE(mord.LogisticSE): def __init__(self, alpha=1.0, class_weight=None): assert class_weight in [None, 'balanced'], 'unexpected value for class_weight' self.class_weight = class_weight super(LogisticSE, self).__init__(alpha=alpha) def fit(self, X, y, sample_weight=None): if self.class_weight == 'balanced': classes = sorted(np.unique(y)) class_weight = compute_class_weight('balanced', classes=classes, y=y) sample_weight = class_weight[y] return super(LogisticSE, self).fit(X, y, sample_weight=sample_weight) class LogisticIT(mord.LogisticIT): def __init__(self, alpha=1.0, class_weight=None): assert class_weight in [None, 'balanced'], 'unexpected value for class_weight' self.class_weight = class_weight super(LogisticIT, self).__init__(alpha=alpha) def fit(self, X, y, sample_weight=None): if self.class_weight == 'balanced': classes = sorted(np.unique(y)) class_weight = compute_class_weight('balanced', classes=classes, y=y) sample_weight = class_weight[y] return super(LogisticIT, self).fit(X, y, sample_weight=sample_weight) # regression-based ordinal regression (see https://pythonhosted.org/mord/) # class LAD(mord.LAD): # def fit(self, X, y): # self.classes_ = sorted(np.unique(y)) # return super().fit(X, y) # class OrdinalRidge(mord.OrdinalRidge): # def fit(self, X, y): # self.classes_ = sorted(np.unique(y)) # return super().fit(X, y)