forked from moreo/QuaPy
setting different colors to error drifts
This commit is contained in:
parent
56bb60d8b6
commit
fc228a722d
|
@ -74,7 +74,7 @@ def quantification_ensembles():
|
||||||
# will be skipped (by setting hyperparameters to None)
|
# will be skipped (by setting hyperparameters to None)
|
||||||
hyper_none = None
|
hyper_none = None
|
||||||
yield 'epaccmaeptr', EPACC(newLR(), optim='mae', policy='ptr', **common), hyper_none
|
yield 'epaccmaeptr', EPACC(newLR(), optim='mae', policy='ptr', **common), hyper_none
|
||||||
yield 'epaccmaemae1k', EPACC(newLR(), optim='mae', policy='mae', **common), hyper_none
|
yield 'epaccmaemae', EPACC(newLR(), optim='mae', policy='mae', **common), hyper_none
|
||||||
# yield 'esldmaeptr', EEMQ(newLR(), optim='mae', policy='ptr', **common), hyper_none
|
# yield 'esldmaeptr', EEMQ(newLR(), optim='mae', policy='ptr', **common), hyper_none
|
||||||
# yield 'esldmaemae', EEMQ(newLR(), optim='mae', policy='mae', **common), hyper_none
|
# yield 'esldmaemae', EEMQ(newLR(), optim='mae', policy='mae', **common), hyper_none
|
||||||
|
|
||||||
|
|
|
@ -82,13 +82,13 @@ new_methods_ae = ['svmmae' , 'epaccmaeptr', 'epaccmaemae', 'hdy', 'quanet']
|
||||||
new_methods_rae = ['svmmrae' , 'epaccmraeptr', 'epaccmraemrae', 'hdy', 'quanet']
|
new_methods_rae = ['svmmrae' , 'epaccmraeptr', 'epaccmraemrae', 'hdy', 'quanet']
|
||||||
|
|
||||||
plot_error_by_drift(gao_seb_methods+new_methods_ae, error_name='ae', path=plotdir)
|
plot_error_by_drift(gao_seb_methods+new_methods_ae, error_name='ae', path=plotdir)
|
||||||
plot_error_by_drift(gao_seb_methods+new_methods_rae, error_name='rae', logscale=True, path=plotdir)
|
# plot_error_by_drift(gao_seb_methods+new_methods_rae, error_name='rae', logscale=True, path=plotdir)
|
||||||
|
|
||||||
diagonal_plot(gao_seb_methods+new_methods_ae, error_name='ae', path=plotdir)
|
# diagonal_plot(gao_seb_methods+new_methods_ae, error_name='ae', path=plotdir)
|
||||||
diagonal_plot(gao_seb_methods+new_methods_rae, error_name='rae', path=plotdir)
|
# diagonal_plot(gao_seb_methods+new_methods_rae, error_name='rae', path=plotdir)
|
||||||
|
|
||||||
binary_bias_global(gao_seb_methods+new_methods_ae, error_name='ae', path=plotdir)
|
# binary_bias_global(gao_seb_methods+new_methods_ae, error_name='ae', path=plotdir)
|
||||||
binary_bias_global(gao_seb_methods+new_methods_rae, error_name='rae', path=plotdir)
|
# binary_bias_global(gao_seb_methods+new_methods_rae, error_name='rae', path=plotdir)
|
||||||
|
|
||||||
#binary_bias_bins(gao_seb_methods+new_methods_ae, error_name='ae', path=plotdir)
|
#binary_bias_bins(gao_seb_methods+new_methods_ae, error_name='ae', path=plotdir)
|
||||||
#binary_bias_bins(gao_seb_methods+new_methods_rae, error_name='rae', path=plotdir)
|
#binary_bias_bins(gao_seb_methods+new_methods_rae, error_name='rae', path=plotdir)
|
||||||
|
|
|
@ -208,13 +208,14 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, n_bins=20, e
|
||||||
inds = np.digitize(tr_test_drifts, bins, right=True)
|
inds = np.digitize(tr_test_drifts, bins, right=True)
|
||||||
inds_histogram_global += np.histogram(tr_test_drifts, density=True, bins=bins)[0]
|
inds_histogram_global += np.histogram(tr_test_drifts, density=True, bins=bins)[0]
|
||||||
|
|
||||||
xs, ys, ystds = [], [], []
|
xs, ys, ystds, npoints = [], [], [], []
|
||||||
for ind in range(len(bins)):
|
for ind in range(len(bins)):
|
||||||
selected = inds==ind
|
selected = inds==ind
|
||||||
if selected.sum() > 0:
|
if selected.sum() > 0:
|
||||||
xs.append(ind*binwidth)
|
xs.append(ind*binwidth)
|
||||||
ys.append(np.mean(method_drifts[selected]))
|
ys.append(np.mean(method_drifts[selected]))
|
||||||
ystds.append(np.std(method_drifts[selected]))
|
ystds.append(np.std(method_drifts[selected]))
|
||||||
|
npoints.append(len(method_drifts[selected]))
|
||||||
|
|
||||||
xs = np.asarray(xs)
|
xs = np.asarray(xs)
|
||||||
ys = np.asarray(ys)
|
ys = np.asarray(ys)
|
||||||
|
@ -224,7 +225,9 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, n_bins=20, e
|
||||||
min_x = min_x_method if min_x is None or min_x_method < min_x else min_x
|
min_x = min_x_method if min_x is None or min_x_method < min_x else min_x
|
||||||
max_x = max_x_method if max_x is None or max_x_method > max_x else max_x
|
max_x = max_x_method if max_x is None or max_x_method > max_x else max_x
|
||||||
|
|
||||||
ax.errorbar(xs, ys, fmt='-', marker='o', label=method, markersize=3, zorder=2)
|
p = ax.errorbar(xs, ys, fmt='-', marker='o', label=method, markersize=3, zorder=2)
|
||||||
|
ax.scatter(xs, ys, s=npoints, marker="h", color=p[-1].get_color())
|
||||||
|
|
||||||
if show_std:
|
if show_std:
|
||||||
ax.fill_between(xs, ys-ystds, ys+ystds, alpha=0.25)
|
ax.fill_between(xs, ys-ystds, ys+ystds, alpha=0.25)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue