forked from moreo/QuaPy
parallel functionality added to quapy in order to allow for multiprocess parallelization (and not threading) handling quapy's environment variables
This commit is contained in:
parent
301e8b9088
commit
e609c262b4
|
@ -17,6 +17,8 @@ import torch
|
||||||
import shutil
|
import shutil
|
||||||
|
|
||||||
|
|
||||||
|
qp.environ['SAMPLE_SIZE'] = settings.SAMPLE_SIZE
|
||||||
|
|
||||||
def newLR():
|
def newLR():
|
||||||
return LogisticRegression(max_iter=1000, solver='lbfgs', n_jobs=-1)
|
return LogisticRegression(max_iter=1000, solver='lbfgs', n_jobs=-1)
|
||||||
|
|
||||||
|
@ -69,8 +71,8 @@ def quantification_ensembles():
|
||||||
hyper_none = None
|
hyper_none = None
|
||||||
yield 'epaccmaeptr', EPACC(newLR(), optim='mae', policy='ptr', **common), hyper_none
|
yield 'epaccmaeptr', EPACC(newLR(), optim='mae', policy='ptr', **common), hyper_none
|
||||||
yield 'epaccmaemae', EPACC(newLR(), optim='mae', policy='mae', **common), hyper_none
|
yield 'epaccmaemae', EPACC(newLR(), optim='mae', policy='mae', **common), hyper_none
|
||||||
#yield 'esldmaeptr', EEMQ(newLR(), optim='mae', policy='ptr', **common), hyper_none
|
# yield 'esldmaeptr', EEMQ(newLR(), optim='mae', policy='ptr', **common), hyper_none
|
||||||
#yield 'esldmaemae', EEMQ(newLR(), optim='mae', policy='mae', **common), hyper_none
|
# yield 'esldmaemae', EEMQ(newLR(), optim='mae', policy='mae', **common), hyper_none
|
||||||
|
|
||||||
yield 'epaccmraeptr', EPACC(newLR(), optim='mrae', policy='ptr', **common), hyper_none
|
yield 'epaccmraeptr', EPACC(newLR(), optim='mrae', policy='ptr', **common), hyper_none
|
||||||
yield 'epaccmraemrae', EPACC(newLR(), optim='mrae', policy='mrae', **common), hyper_none
|
yield 'epaccmraemrae', EPACC(newLR(), optim='mrae', policy='mrae', **common), hyper_none
|
||||||
|
@ -115,8 +117,6 @@ def save_results(dataset_name, model_name, optim_loss, *results):
|
||||||
|
|
||||||
def run(experiment):
|
def run(experiment):
|
||||||
|
|
||||||
qp.environ['SAMPLE_SIZE'] = settings.SAMPLE_SIZE
|
|
||||||
|
|
||||||
optim_loss, dataset_name, (model_name, model, hyperparams) = experiment
|
optim_loss, dataset_name, (model_name, model, hyperparams) = experiment
|
||||||
|
|
||||||
if is_already_computed(dataset_name, model_name, optim_loss=optim_loss):
|
if is_already_computed(dataset_name, model_name, optim_loss=optim_loss):
|
||||||
|
@ -198,19 +198,16 @@ if __name__ == '__main__':
|
||||||
datasets = qp.datasets.TWITTER_SENTIMENT_DATASETS_TRAIN
|
datasets = qp.datasets.TWITTER_SENTIMENT_DATASETS_TRAIN
|
||||||
|
|
||||||
models = quantification_models()
|
models = quantification_models()
|
||||||
Parallel(n_jobs=settings.N_JOBS)(
|
qp.util.parallel(run, itertools.product(optim_losses, datasets, models), n_jobs=settings.N_JOBS)
|
||||||
delayed(run)(experiment) for experiment in itertools.product(optim_losses, datasets, models)
|
|
||||||
)
|
|
||||||
|
|
||||||
models = quantification_cuda_models()
|
models = quantification_cuda_models()
|
||||||
Parallel(n_jobs=settings.CUDA_N_JOBS)(
|
qp.util.parallel(run, itertools.product(optim_losses, datasets, models), n_jobs=settings.CUDA_N_JOBS)
|
||||||
delayed(run)(experiment) for experiment in itertools.product(optim_losses, datasets, models)
|
|
||||||
)
|
|
||||||
|
|
||||||
models = quantification_ensembles()
|
models = quantification_ensembles()
|
||||||
Parallel(n_jobs=1)(
|
qp.util.parallel(run, itertools.product(optim_losses, datasets, models), n_jobs=1)
|
||||||
delayed(run)(experiment) for experiment in itertools.product(optim_losses, datasets, models)
|
# Parallel(n_jobs=1)(
|
||||||
)
|
# delayed(run)(experiment) for experiment in itertools.product(optim_losses, datasets, models)
|
||||||
|
# )
|
||||||
|
|
||||||
#shutil.rmtree(args.checkpointdir, ignore_errors=True)
|
#shutil.rmtree(args.checkpointdir, ignore_errors=True)
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,94 @@
|
||||||
|
import quapy as qp
|
||||||
|
import settings
|
||||||
|
import os
|
||||||
|
import pathlib
|
||||||
|
import pickle
|
||||||
|
from glob import glob
|
||||||
|
import sys
|
||||||
|
from TweetSentQuant.util import nicename
|
||||||
|
from os.path import join
|
||||||
|
|
||||||
|
|
||||||
|
qp.environ['SAMPLE_SIZE'] = settings.SAMPLE_SIZE
|
||||||
|
|
||||||
|
resultdir = './results'
|
||||||
|
plotdir = './plots'
|
||||||
|
os.makedirs(plotdir, exist_ok=True)
|
||||||
|
|
||||||
|
def gather_results(methods, error_name):
|
||||||
|
method_names, true_prevs, estim_prevs, tr_prevs = [], [], [], []
|
||||||
|
for method in methods:
|
||||||
|
for experiment in glob(f'{resultdir}/*-{method}-m{error_name}.pkl'):
|
||||||
|
true_prevalences, estim_prevalences, tr_prev, te_prev, te_prev_estim, best_params = pickle.load(open(experiment, 'rb'))
|
||||||
|
method_names.append(nicename(method))
|
||||||
|
true_prevs.append(true_prevalences)
|
||||||
|
estim_prevs.append(estim_prevalences)
|
||||||
|
tr_prevs.append(tr_prev)
|
||||||
|
return method_names, true_prevs, estim_prevs, tr_prevs
|
||||||
|
|
||||||
|
|
||||||
|
def plot_error_by_drift(methods, error_name, logscale=False, path=None):
|
||||||
|
print('plotting error by drift')
|
||||||
|
if path is not None:
|
||||||
|
path = join(path, f'error_by_drift_{error_name}.pdf')
|
||||||
|
method_names, true_prevs, estim_prevs, tr_prevs = gather_results(methods, error_name)
|
||||||
|
qp.plot.error_by_drift(
|
||||||
|
method_names,
|
||||||
|
true_prevs,
|
||||||
|
estim_prevs,
|
||||||
|
tr_prevs,
|
||||||
|
n_bins=20,
|
||||||
|
error_name=error_name,
|
||||||
|
show_std=False,
|
||||||
|
logscale=logscale,
|
||||||
|
title=f'Quantification error as a function of distribution shift',
|
||||||
|
savepath=path
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def diagonal_plot(methods, error_name, path=None):
|
||||||
|
print('plotting diagonal plots')
|
||||||
|
if path is not None:
|
||||||
|
path = join(path, f'diag_{error_name}')
|
||||||
|
method_names, true_prevs, estim_prevs, tr_prevs = gather_results(methods, error_name)
|
||||||
|
qp.plot.binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=0, title='Negative', legend=False, show_std=False, savepath=path+'_neg.pdf')
|
||||||
|
qp.plot.binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=1, title='Neutral', legend=False, show_std=False, savepath=path+'_neu.pdf')
|
||||||
|
qp.plot.binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=2, title='Positive', legend=True, show_std=False, savepath=path+'_pos.pdf')
|
||||||
|
|
||||||
|
|
||||||
|
def binary_bias_global(methods, error_name, path=None):
|
||||||
|
print('plotting bias global')
|
||||||
|
if path is not None:
|
||||||
|
path = join(path, f'globalbias_{error_name}')
|
||||||
|
method_names, true_prevs, estim_prevs, tr_prevs = gather_results(methods, error_name)
|
||||||
|
qp.plot.binary_bias_global(method_names, true_prevs, estim_prevs, pos_class=0, title='Negative', savepath=path+'_neg.pdf')
|
||||||
|
qp.plot.binary_bias_global(method_names, true_prevs, estim_prevs, pos_class=1, title='Neutral', savepath=path+'_neu.pdf')
|
||||||
|
qp.plot.binary_bias_global(method_names, true_prevs, estim_prevs, pos_class=2, title='Positive', savepath=path+'_pos.pdf')
|
||||||
|
|
||||||
|
|
||||||
|
def binary_bias_bins(methods, error_name, path=None):
|
||||||
|
print('plotting bias local')
|
||||||
|
if path is not None:
|
||||||
|
path = join(path, f'localbias_{error_name}')
|
||||||
|
method_names, true_prevs, estim_prevs, tr_prevs = gather_results(methods, error_name)
|
||||||
|
qp.plot.binary_bias_bins(method_names, true_prevs, estim_prevs, pos_class=0, title='Negative', legend=False, savepath=path+'_neg.pdf')
|
||||||
|
qp.plot.binary_bias_bins(method_names, true_prevs, estim_prevs, pos_class=1, title='Neutral', legend=False, savepath=path+'_neu.pdf')
|
||||||
|
qp.plot.binary_bias_bins(method_names, true_prevs, estim_prevs, pos_class=2, title='Positive', legend=True, savepath=path+'_pos.pdf')
|
||||||
|
|
||||||
|
|
||||||
|
gao_seb_methods = ['cc', 'acc', 'pcc', 'pacc', 'sld', 'svmq', 'svmkld', 'svmnkld']
|
||||||
|
new_methods_ae = ['svmmae' , 'epaccmaeptr', 'epaccmaemae', 'hdy', 'quanet']
|
||||||
|
new_methods_rae = ['svmmrae' , 'epaccmraeptr', 'epaccmraemrae', 'hdy', 'quanet']
|
||||||
|
|
||||||
|
# plot_error_by_drift(gao_seb_methods+new_methods_ae, error_name='ae', path=plotdir)
|
||||||
|
# plot_error_by_drift(gao_seb_methods+new_methods_rae, error_name='rae', logscale=True, path=plotdir)
|
||||||
|
|
||||||
|
# diagonal_plot(gao_seb_methods+new_methods_ae, error_name='ae', path=plotdir)
|
||||||
|
# diagonal_plot(gao_seb_methods+new_methods_rae, error_name='rae', path=plotdir)
|
||||||
|
|
||||||
|
binary_bias_global(gao_seb_methods+new_methods_ae, error_name='ae', path=plotdir)
|
||||||
|
binary_bias_global(gao_seb_methods+new_methods_rae, error_name='rae', path=plotdir)
|
||||||
|
|
||||||
|
# binary_bias_bins(gao_seb_methods+new_methods_ae, error_name='ae', path=plotdir)
|
||||||
|
# binary_bias_bins(gao_seb_methods+new_methods_rae, error_name='rae', path=plotdir)
|
||||||
|
|
|
@ -4,7 +4,7 @@ from os import makedirs
|
||||||
import sys, os
|
import sys, os
|
||||||
import pickle
|
import pickle
|
||||||
import argparse
|
import argparse
|
||||||
|
from TweetSentQuant.util import nicename, get_ranks_from_Gao_Sebastiani
|
||||||
import settings
|
import settings
|
||||||
from experiments import result_path
|
from experiments import result_path
|
||||||
from tabular import Table
|
from tabular import Table
|
||||||
|
@ -17,84 +17,6 @@ makedirs(tables_path, exist_ok=True)
|
||||||
qp.environ['SAMPLE_SIZE'] = settings.SAMPLE_SIZE
|
qp.environ['SAMPLE_SIZE'] = settings.SAMPLE_SIZE
|
||||||
|
|
||||||
|
|
||||||
nice = {
|
|
||||||
'mae':'AE',
|
|
||||||
'mrae':'RAE',
|
|
||||||
'ae':'AE',
|
|
||||||
'rae':'RAE',
|
|
||||||
'svmkld': 'SVM(KLD)',
|
|
||||||
'svmnkld': 'SVM(NKLD)',
|
|
||||||
'svmq': 'SVM(Q)',
|
|
||||||
'svmae': 'SVM(AE)',
|
|
||||||
'svmnae': 'SVM(NAE)',
|
|
||||||
'svmmae': 'SVM(AE)',
|
|
||||||
'svmmrae': 'SVM(RAE)',
|
|
||||||
'quanet': 'QuaNet',
|
|
||||||
'hdy': 'HDy',
|
|
||||||
'dys': 'DyS',
|
|
||||||
'epaccmaeptr': 'E(PACC)$_\mathrm{Ptr}$',
|
|
||||||
'epaccmaemae': 'E(PACC)$_\mathrm{AE}$',
|
|
||||||
'epaccmraeptr': 'E(PACC)$_\mathrm{Ptr}$',
|
|
||||||
'epaccmraemrae': 'E(PACC)$_\mathrm{RAE}$',
|
|
||||||
'svmperf':'',
|
|
||||||
'sanders': 'Sanders',
|
|
||||||
'semeval13': 'SemEval13',
|
|
||||||
'semeval14': 'SemEval14',
|
|
||||||
'semeval15': 'SemEval15',
|
|
||||||
'semeval16': 'SemEval16',
|
|
||||||
'Average': 'Average'
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def nicerm(key):
|
|
||||||
return '\mathrm{'+nice[key]+'}'
|
|
||||||
|
|
||||||
|
|
||||||
def load_Gao_Sebastiani_previous_results():
|
|
||||||
def rename(method):
|
|
||||||
old2new = {
|
|
||||||
'kld': 'svmkld',
|
|
||||||
'nkld': 'svmnkld',
|
|
||||||
'qbeta2': 'svmq',
|
|
||||||
'em': 'sld'
|
|
||||||
}
|
|
||||||
return old2new.get(method, method)
|
|
||||||
|
|
||||||
gao_seb_results = {}
|
|
||||||
with open('./Gao_Sebastiani_results.txt', 'rt') as fin:
|
|
||||||
lines = fin.readlines()
|
|
||||||
for line in lines[1:]:
|
|
||||||
line = line.strip()
|
|
||||||
parts = line.lower().split()
|
|
||||||
if len(parts) == 4:
|
|
||||||
dataset, method, ae, rae = parts
|
|
||||||
else:
|
|
||||||
method, ae, rae = parts
|
|
||||||
learner, method = method.split('-')
|
|
||||||
method = rename(method)
|
|
||||||
gao_seb_results[f'{dataset}-{method}-ae'] = float(ae)
|
|
||||||
gao_seb_results[f'{dataset}-{method}-rae'] = float(rae)
|
|
||||||
return gao_seb_results
|
|
||||||
|
|
||||||
|
|
||||||
def get_ranks_from_Gao_Sebastiani():
|
|
||||||
gao_seb_results = load_Gao_Sebastiani_previous_results()
|
|
||||||
datasets = set([key.split('-')[0] for key in gao_seb_results.keys()])
|
|
||||||
methods = np.sort(np.unique([key.split('-')[1] for key in gao_seb_results.keys()]))
|
|
||||||
ranks = {}
|
|
||||||
for metric in ['ae', 'rae']:
|
|
||||||
for dataset in datasets:
|
|
||||||
scores = [gao_seb_results[f'{dataset}-{method}-{metric}'] for method in methods]
|
|
||||||
order = np.argsort(scores)
|
|
||||||
sorted_methods = methods[order]
|
|
||||||
for i, method in enumerate(sorted_methods):
|
|
||||||
ranks[f'{dataset}-{method}-{metric}'] = i+1
|
|
||||||
for method in methods:
|
|
||||||
rankave = np.mean([ranks[f'{dataset}-{method}-{metric}'] for dataset in datasets])
|
|
||||||
ranks[f'Average-{method}-{metric}'] = rankave
|
|
||||||
return ranks, gao_seb_results
|
|
||||||
|
|
||||||
|
|
||||||
def save_table(path, table):
|
def save_table(path, table):
|
||||||
print(f'saving results in {path}')
|
print(f'saving results in {path}')
|
||||||
with open(path, 'wt') as foo:
|
with open(path, 'wt') as foo:
|
||||||
|
@ -111,15 +33,6 @@ def experiment_errors(path, dataset, method, loss):
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
def nicename(method, eval_name=None, side=False):
|
|
||||||
m = nice.get(method, method.upper())
|
|
||||||
if eval_name is not None:
|
|
||||||
o = '$^{' + nicerm(eval_name) + '}$'
|
|
||||||
m = (m+o).replace('$$','')
|
|
||||||
if side:
|
|
||||||
m = '\side{'+m+'}'
|
|
||||||
return m
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser(description='Generate tables for Tweeter Sentiment Quantification')
|
parser = argparse.ArgumentParser(description='Generate tables for Tweeter Sentiment Quantification')
|
||||||
|
@ -146,7 +59,7 @@ if __name__ == '__main__':
|
||||||
nnew_methods = len(added_methods)
|
nnew_methods = len(added_methods)
|
||||||
|
|
||||||
# fill data table
|
# fill data table
|
||||||
table = Table(rows=datasets, cols=methods)
|
table = Table(benchmarks=datasets, methods=methods)
|
||||||
for dataset in datasets:
|
for dataset in datasets:
|
||||||
for method in methods:
|
for method in methods:
|
||||||
table.add(dataset, method, experiment_errors(args.results, dataset, method, eval_name))
|
table.add(dataset, method, experiment_errors(args.results, dataset, method, eval_name))
|
||||||
|
@ -166,7 +79,7 @@ if __name__ == '__main__':
|
||||||
rowreplace={dataset: nicename(dataset) for dataset in datasets}
|
rowreplace={dataset: nicename(dataset) for dataset in datasets}
|
||||||
colreplace={method: nicename(method, eval_name, side=True) for method in methods}
|
colreplace={method: nicename(method, eval_name, side=True) for method in methods}
|
||||||
|
|
||||||
tabular += table.latexTabular(rowreplace=rowreplace, colreplace=colreplace)
|
tabular += table.latexTabular(benchmark_replace=rowreplace, method_replace=colreplace)
|
||||||
tabular += """
|
tabular += """
|
||||||
\end{tabular}%
|
\end{tabular}%
|
||||||
}
|
}
|
||||||
|
@ -178,8 +91,10 @@ if __name__ == '__main__':
|
||||||
# ----------------------------------------------------
|
# ----------------------------------------------------
|
||||||
methods = gao_seb_methods
|
methods = gao_seb_methods
|
||||||
|
|
||||||
|
table.dropMethods(added_methods)
|
||||||
|
|
||||||
# fill the data table
|
# fill the data table
|
||||||
ranktable = Table(rows=datasets, cols=methods, missing='--')
|
ranktable = Table(benchmarks=datasets, methods=methods, missing='--')
|
||||||
for dataset in datasets:
|
for dataset in datasets:
|
||||||
for method in methods:
|
for method in methods:
|
||||||
ranktable.add(dataset, method, values=table.get(dataset, method, 'rank'))
|
ranktable.add(dataset, method, values=table.get(dataset, method, 'rank'))
|
||||||
|
|
|
@ -6,15 +6,15 @@ from scipy.stats import ttest_ind_from_stats, wilcoxon
|
||||||
class Table:
|
class Table:
|
||||||
VALID_TESTS = [None, "wilcoxon", "ttest"]
|
VALID_TESTS = [None, "wilcoxon", "ttest"]
|
||||||
|
|
||||||
def __init__(self, rows, cols, lower_is_better=True, ttest='ttest', prec_mean=3,
|
def __init__(self, benchmarks, methods, lower_is_better=True, ttest='ttest', prec_mean=3,
|
||||||
clean_zero=False, show_std=False, prec_std=3, average=True, missing=None, missing_str='--', color=True):
|
clean_zero=False, show_std=False, prec_std=3, average=True, missing=None, missing_str='--', color=True):
|
||||||
assert ttest in self.VALID_TESTS, f'unknown test, valid are {self.VALID_TESTS}'
|
assert ttest in self.VALID_TESTS, f'unknown test, valid are {self.VALID_TESTS}'
|
||||||
|
|
||||||
self.rows = np.asarray(rows)
|
self.benchmarks = np.asarray(benchmarks)
|
||||||
self.row_index = {row:i for i, row in enumerate(rows)}
|
self.benchmark_index = {row:i for i, row in enumerate(benchmarks)}
|
||||||
|
|
||||||
self.cols = np.asarray(cols)
|
self.methods = np.asarray(methods)
|
||||||
self.col_index = {col:j for j, col in enumerate(cols)}
|
self.method_index = {col:j for j, col in enumerate(methods)}
|
||||||
|
|
||||||
self.map = {} # keyed (#rows,#cols)-ndarrays holding computations from self.map['values']
|
self.map = {} # keyed (#rows,#cols)-ndarrays holding computations from self.map['values']
|
||||||
self._addmap('values', dtype=object)
|
self._addmap('values', dtype=object)
|
||||||
|
@ -31,12 +31,12 @@ class Table:
|
||||||
self.touch()
|
self.touch()
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def nrows(self):
|
def nbenchmarks(self):
|
||||||
return len(self.rows)
|
return len(self.benchmarks)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def ncols(self):
|
def nmethods(self):
|
||||||
return len(self.cols)
|
return len(self.methods)
|
||||||
|
|
||||||
def touch(self):
|
def touch(self):
|
||||||
self.modif = True
|
self.modif = True
|
||||||
|
@ -53,10 +53,10 @@ class Table:
|
||||||
return self.map['values']
|
return self.map['values']
|
||||||
|
|
||||||
def _indexes(self):
|
def _indexes(self):
|
||||||
return itertools.product(range(self.nrows), range(self.ncols))
|
return itertools.product(range(self.nbenchmarks), range(self.nmethods))
|
||||||
|
|
||||||
def _addmap(self, map, dtype, func=None):
|
def _addmap(self, map, dtype, func=None):
|
||||||
self.map[map] = np.empty((self.nrows, self.ncols), dtype=dtype)
|
self.map[map] = np.empty((self.nbenchmarks, self.nmethods), dtype=dtype)
|
||||||
if func is None:
|
if func is None:
|
||||||
return
|
return
|
||||||
m = self.map[map]
|
m = self.map[map]
|
||||||
|
@ -68,7 +68,7 @@ class Table:
|
||||||
m[i, j] = f(self.values[i, j])
|
m[i, j] = f(self.values[i, j])
|
||||||
|
|
||||||
def _addrank(self):
|
def _addrank(self):
|
||||||
for i in range(self.nrows):
|
for i in range(self.nbenchmarks):
|
||||||
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
|
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
|
||||||
col_means = [self.map['mean'][i,j] for j in filled_cols_idx]
|
col_means = [self.map['mean'][i,j] for j in filled_cols_idx]
|
||||||
ranked_cols_idx = filled_cols_idx[np.argsort(col_means)]
|
ranked_cols_idx = filled_cols_idx[np.argsort(col_means)]
|
||||||
|
@ -77,7 +77,7 @@ class Table:
|
||||||
self.map['rank'][i, ranked_cols_idx] = np.arange(1, len(filled_cols_idx)+1)
|
self.map['rank'][i, ranked_cols_idx] = np.arange(1, len(filled_cols_idx)+1)
|
||||||
|
|
||||||
def _addcolor(self):
|
def _addcolor(self):
|
||||||
for i in range(self.nrows):
|
for i in range(self.nbenchmarks):
|
||||||
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
|
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
|
||||||
if filled_cols_idx.size==0:
|
if filled_cols_idx.size==0:
|
||||||
continue
|
continue
|
||||||
|
@ -115,8 +115,8 @@ class Table:
|
||||||
def _addttest(self):
|
def _addttest(self):
|
||||||
if self.ttest is None:
|
if self.ttest is None:
|
||||||
return
|
return
|
||||||
self.some_similar = [False]*self.ncols
|
self.some_similar = [False]*self.nmethods
|
||||||
for i in range(self.nrows):
|
for i in range(self.nbenchmarks):
|
||||||
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
|
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
|
||||||
if len(filled_cols_idx) <= 1:
|
if len(filled_cols_idx) <= 1:
|
||||||
continue
|
continue
|
||||||
|
@ -153,34 +153,34 @@ class Table:
|
||||||
self.modif = False
|
self.modif = False
|
||||||
|
|
||||||
def _is_column_full(self, col):
|
def _is_column_full(self, col):
|
||||||
return all(self.map['fill'][:, self.col_index[col]])
|
return all(self.map['fill'][:, self.method_index[col]])
|
||||||
|
|
||||||
def _addave(self):
|
def _addave(self):
|
||||||
ave = Table(['ave'], self.cols, lower_is_better=self.lower_is_better, ttest=self.ttest, average=False,
|
ave = Table(['ave'], self.methods, lower_is_better=self.lower_is_better, ttest=self.ttest, average=False,
|
||||||
missing=self.missing, missing_str=self.missing_str)
|
missing=self.missing, missing_str=self.missing_str)
|
||||||
for col in self.cols:
|
for col in self.methods:
|
||||||
values = None
|
values = None
|
||||||
if self._is_column_full(col):
|
if self._is_column_full(col):
|
||||||
if self.ttest == 'ttest':
|
if self.ttest == 'ttest':
|
||||||
values = np.asarray(self.map['mean'][:, self.col_index[col]])
|
values = np.asarray(self.map['mean'][:, self.method_index[col]])
|
||||||
else: # wilcoxon
|
else: # wilcoxon
|
||||||
values = np.concatenate(self.values[:, self.col_index[col]])
|
values = np.concatenate(self.values[:, self.method_index[col]])
|
||||||
ave.add('ave', col, values)
|
ave.add('ave', col, values)
|
||||||
self.average = ave
|
self.average = ave
|
||||||
|
|
||||||
def add(self, row, col, values):
|
def add(self, benchmark, method, values):
|
||||||
if values is not None:
|
if values is not None:
|
||||||
values = np.asarray(values)
|
values = np.asarray(values)
|
||||||
if values.ndim==0:
|
if values.ndim==0:
|
||||||
values = values.flatten()
|
values = values.flatten()
|
||||||
rid, cid = self._coordinates(row, col)
|
rid, cid = self._coordinates(benchmark, method)
|
||||||
self.map['values'][rid, cid] = values
|
self.map['values'][rid, cid] = values
|
||||||
self.touch()
|
self.touch()
|
||||||
|
|
||||||
def get(self, row, col, attr='mean'):
|
def get(self, benchmark, method, attr='mean'):
|
||||||
self.update()
|
self.update()
|
||||||
assert attr in self.map, f'unknwon attribute {attr}'
|
assert attr in self.map, f'unknwon attribute {attr}'
|
||||||
rid, cid = self._coordinates(row, col)
|
rid, cid = self._coordinates(benchmark, method)
|
||||||
if self.map['fill'][rid, cid]:
|
if self.map['fill'][rid, cid]:
|
||||||
v = self.map[attr][rid, cid]
|
v = self.map[attr][rid, cid]
|
||||||
if v is None or (isinstance(v,float) and np.isnan(v)):
|
if v is None or (isinstance(v,float) and np.isnan(v)):
|
||||||
|
@ -190,27 +190,27 @@ class Table:
|
||||||
return self.missing
|
return self.missing
|
||||||
|
|
||||||
def _coordinates(self, row, col):
|
def _coordinates(self, row, col):
|
||||||
assert row in self.row_index, f'row {row} out of range'
|
assert row in self.benchmark_index, f'row {row} out of range'
|
||||||
assert col in self.col_index, f'col {col} out of range'
|
assert col in self.method_index, f'col {col} out of range'
|
||||||
rid = self.row_index[row]
|
rid = self.benchmark_index[row]
|
||||||
cid = self.col_index[col]
|
cid = self.method_index[col]
|
||||||
return rid, cid
|
return rid, cid
|
||||||
|
|
||||||
def get_average(self, col, attr='mean'):
|
def get_average(self, method, attr='mean'):
|
||||||
self.update()
|
self.update()
|
||||||
if self.add_average:
|
if self.add_average:
|
||||||
return self.average.get('ave', col, attr=attr)
|
return self.average.get('ave', method, attr=attr)
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def get_color(self, row, col):
|
def get_color(self, benchmark, method):
|
||||||
color = self.get(row, col, attr='color')
|
color = self.get(benchmark, method, attr='color')
|
||||||
if color is None:
|
if color is None:
|
||||||
return ''
|
return ''
|
||||||
return color
|
return color
|
||||||
|
|
||||||
def latex(self, row, col):
|
def latex(self, benchmark, method):
|
||||||
self.update()
|
self.update()
|
||||||
i,j = self._coordinates(row, col)
|
i,j = self._coordinates(benchmark, method)
|
||||||
if self.map['fill'][i,j] == False:
|
if self.map['fill'][i,j] == False:
|
||||||
return self.missing_str
|
return self.missing_str
|
||||||
|
|
||||||
|
@ -249,12 +249,12 @@ class Table:
|
||||||
|
|
||||||
return l
|
return l
|
||||||
|
|
||||||
def latexTabular(self, rowreplace={}, colreplace={}, average=True):
|
def latexTabular(self, benchmark_replace={}, method_replace={}, average=True):
|
||||||
tab = ' & '
|
tab = ' & '
|
||||||
tab += ' & '.join([colreplace.get(col, col) for col in self.cols])
|
tab += ' & '.join([method_replace.get(col, col) for col in self.methods])
|
||||||
tab += ' \\\\\hline\n'
|
tab += ' \\\\\hline\n'
|
||||||
for row in self.rows:
|
for row in self.benchmarks:
|
||||||
rowname = rowreplace.get(row, row)
|
rowname = benchmark_replace.get(row, row)
|
||||||
tab += rowname + ' & '
|
tab += rowname + ' & '
|
||||||
tab += self.latexRow(row)
|
tab += self.latexRow(row)
|
||||||
|
|
||||||
|
@ -264,8 +264,8 @@ class Table:
|
||||||
tab += self.latexAverage()
|
tab += self.latexAverage()
|
||||||
return tab
|
return tab
|
||||||
|
|
||||||
def latexRow(self, row, endl='\\\\\hline\n'):
|
def latexRow(self, benchmark, endl='\\\\\hline\n'):
|
||||||
s = [self.latex(row, col) for col in self.cols]
|
s = [self.latex(benchmark, col) for col in self.methods]
|
||||||
s = ' & '.join(s)
|
s = ' & '.join(s)
|
||||||
s += ' ' + endl
|
s += ' ' + endl
|
||||||
return s
|
return s
|
||||||
|
@ -275,14 +275,28 @@ class Table:
|
||||||
return self.average.latexRow('ave', endl=endl)
|
return self.average.latexRow('ave', endl=endl)
|
||||||
|
|
||||||
def getRankTable(self):
|
def getRankTable(self):
|
||||||
t = Table(rows=self.rows, cols=self.cols, prec_mean=0, average=True)
|
t = Table(benchmarks=self.benchmarks, methods=self.methods, prec_mean=0, average=True)
|
||||||
for rid, cid in self._getfilled():
|
for rid, cid in self._getfilled():
|
||||||
row = self.rows[rid]
|
row = self.benchmarks[rid]
|
||||||
col = self.cols[cid]
|
col = self.methods[cid]
|
||||||
t.add(row, col, self.get(row, col, 'rank'))
|
t.add(row, col, self.get(row, col, 'rank'))
|
||||||
t.compute()
|
t.compute()
|
||||||
return t
|
return t
|
||||||
|
|
||||||
|
|
||||||
|
def dropMethods(self, methods):
|
||||||
|
drop_index = [self.method_index[m] for m in methods]
|
||||||
|
new_methods = np.delete(self.methods, drop_index)
|
||||||
|
new_index = {col:j for j, col in enumerate(new_methods)}
|
||||||
|
|
||||||
|
self.map['values'] = self.values[:,np.asarray([self.method_index[m] for m in new_methods], dtype=int)]
|
||||||
|
self.methods = new_methods
|
||||||
|
self.method_index = new_index
|
||||||
|
self.touch()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def pval_interpretation(p_val):
|
def pval_interpretation(p_val):
|
||||||
if 0.005 >= p_val:
|
if 0.005 >= p_val:
|
||||||
return 'Diff'
|
return 'Diff'
|
||||||
|
|
|
@ -0,0 +1,87 @@
|
||||||
|
|
||||||
|
nice = {
|
||||||
|
'mae':'AE',
|
||||||
|
'mrae':'RAE',
|
||||||
|
'ae':'AE',
|
||||||
|
'rae':'RAE',
|
||||||
|
'svmkld': 'SVM(KLD)',
|
||||||
|
'svmnkld': 'SVM(NKLD)',
|
||||||
|
'svmq': 'SVM(Q)',
|
||||||
|
'svmae': 'SVM(AE)',
|
||||||
|
'svmnae': 'SVM(NAE)',
|
||||||
|
'svmmae': 'SVM(AE)',
|
||||||
|
'svmmrae': 'SVM(RAE)',
|
||||||
|
'quanet': 'QuaNet',
|
||||||
|
'hdy': 'HDy',
|
||||||
|
'dys': 'DyS',
|
||||||
|
'epaccmaeptr': 'E(PACC)$_\mathrm{Ptr}$',
|
||||||
|
'epaccmaemae': 'E(PACC)$_\mathrm{AE}$',
|
||||||
|
'epaccmraeptr': 'E(PACC)$_\mathrm{Ptr}$',
|
||||||
|
'epaccmraemrae': 'E(PACC)$_\mathrm{RAE}$',
|
||||||
|
'svmperf':'',
|
||||||
|
'sanders': 'Sanders',
|
||||||
|
'semeval13': 'SemEval13',
|
||||||
|
'semeval14': 'SemEval14',
|
||||||
|
'semeval15': 'SemEval15',
|
||||||
|
'semeval16': 'SemEval16',
|
||||||
|
'Average': 'Average'
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def nicerm(key):
|
||||||
|
return '\mathrm{'+nice[key]+'}'
|
||||||
|
|
||||||
|
|
||||||
|
def nicename(method, eval_name=None, side=False):
|
||||||
|
m = nice.get(method, method.upper())
|
||||||
|
if eval_name is not None:
|
||||||
|
o = '$^{' + nicerm(eval_name) + '}$'
|
||||||
|
m = (m+o).replace('$$','')
|
||||||
|
if side:
|
||||||
|
m = '\side{'+m+'}'
|
||||||
|
return m
|
||||||
|
|
||||||
|
|
||||||
|
def load_Gao_Sebastiani_previous_results():
|
||||||
|
def rename(method):
|
||||||
|
old2new = {
|
||||||
|
'kld': 'svmkld',
|
||||||
|
'nkld': 'svmnkld',
|
||||||
|
'qbeta2': 'svmq',
|
||||||
|
'em': 'sld'
|
||||||
|
}
|
||||||
|
return old2new.get(method, method)
|
||||||
|
|
||||||
|
gao_seb_results = {}
|
||||||
|
with open('./Gao_Sebastiani_results.txt', 'rt') as fin:
|
||||||
|
lines = fin.readlines()
|
||||||
|
for line in lines[1:]:
|
||||||
|
line = line.strip()
|
||||||
|
parts = line.lower().split()
|
||||||
|
if len(parts) == 4:
|
||||||
|
dataset, method, ae, rae = parts
|
||||||
|
else:
|
||||||
|
method, ae, rae = parts
|
||||||
|
learner, method = method.split('-')
|
||||||
|
method = rename(method)
|
||||||
|
gao_seb_results[f'{dataset}-{method}-ae'] = float(ae)
|
||||||
|
gao_seb_results[f'{dataset}-{method}-rae'] = float(rae)
|
||||||
|
return gao_seb_results
|
||||||
|
|
||||||
|
|
||||||
|
def get_ranks_from_Gao_Sebastiani():
|
||||||
|
gao_seb_results = load_Gao_Sebastiani_previous_results()
|
||||||
|
datasets = set([key.split('-')[0] for key in gao_seb_results.keys()])
|
||||||
|
methods = np.sort(np.unique([key.split('-')[1] for key in gao_seb_results.keys()]))
|
||||||
|
ranks = {}
|
||||||
|
for metric in ['ae', 'rae']:
|
||||||
|
for dataset in datasets:
|
||||||
|
scores = [gao_seb_results[f'{dataset}-{method}-{metric}'] for method in methods]
|
||||||
|
order = np.argsort(scores)
|
||||||
|
sorted_methods = methods[order]
|
||||||
|
for i, method in enumerate(sorted_methods):
|
||||||
|
ranks[f'{dataset}-{method}-{metric}'] = i+1
|
||||||
|
for method in methods:
|
||||||
|
rankave = np.mean([ranks[f'{dataset}-{method}-{metric}'] for dataset in datasets])
|
||||||
|
ranks[f'Average-{method}-{metric}'] = rankave
|
||||||
|
return ranks, gao_seb_results
|
|
@ -5,7 +5,7 @@ from tqdm import tqdm
|
||||||
|
|
||||||
import quapy as qp
|
import quapy as qp
|
||||||
from quapy.data.base import Dataset
|
from quapy.data.base import Dataset
|
||||||
from quapy.util import parallelize
|
from quapy.util import map_parallel
|
||||||
from .base import LabelledCollection
|
from .base import LabelledCollection
|
||||||
|
|
||||||
|
|
||||||
|
@ -131,9 +131,9 @@ class IndexTransformer:
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def transform(self, X, n_jobs=-1):
|
def transform(self, X, n_jobs=-1):
|
||||||
# given the number of tasks and the number of jobs, generates the slices for the parallel threads
|
# given the number of tasks and the number of jobs, generates the slices for the parallel processes
|
||||||
assert self.unk != -1, 'transform called before fit'
|
assert self.unk != -1, 'transform called before fit'
|
||||||
indexed = parallelize(func=self.index, args=X, n_jobs=n_jobs)
|
indexed = map_parallel(func=self.index, args=X, n_jobs=n_jobs)
|
||||||
return np.asarray(indexed)
|
return np.asarray(indexed)
|
||||||
|
|
||||||
def index(self, documents):
|
def index(self, documents):
|
||||||
|
|
|
@ -2,6 +2,17 @@ import numpy as np
|
||||||
from sklearn.metrics import f1_score
|
from sklearn.metrics import f1_score
|
||||||
|
|
||||||
|
|
||||||
|
def from_name(err_name):
|
||||||
|
assert err_name in ERROR_NAMES, f'unknown error {err_name}'
|
||||||
|
callable_error = globals()[err_name]
|
||||||
|
if err_name in QUANTIFICATION_ERROR_SMOOTH_NAMES:
|
||||||
|
eps = __check_eps()
|
||||||
|
def bound_callable_error(y_true, y_pred):
|
||||||
|
return callable_error(y_true, y_pred, eps)
|
||||||
|
return bound_callable_error
|
||||||
|
return callable_error
|
||||||
|
|
||||||
|
|
||||||
def f1e(y_true, y_pred):
|
def f1e(y_true, y_pred):
|
||||||
return 1. - f1_score(y_true, y_pred, average='macro')
|
return 1. - f1_score(y_true, y_pred, average='macro')
|
||||||
|
|
||||||
|
@ -27,8 +38,8 @@ def se(p, p_hat):
|
||||||
return ((p_hat-p)**2).mean(axis=-1)
|
return ((p_hat-p)**2).mean(axis=-1)
|
||||||
|
|
||||||
|
|
||||||
def mkld(prevs, prevs_hat):
|
def mkld(prevs, prevs_hat, eps=None):
|
||||||
return kld(prevs, prevs_hat).mean()
|
return kld(prevs, prevs_hat, eps).mean()
|
||||||
|
|
||||||
|
|
||||||
def kld(p, p_hat, eps=None):
|
def kld(p, p_hat, eps=None):
|
||||||
|
@ -38,8 +49,8 @@ def kld(p, p_hat, eps=None):
|
||||||
return (sp*np.log(sp/sp_hat)).sum(axis=-1)
|
return (sp*np.log(sp/sp_hat)).sum(axis=-1)
|
||||||
|
|
||||||
|
|
||||||
def mnkld(prevs, prevs_hat):
|
def mnkld(prevs, prevs_hat, eps=None):
|
||||||
return nkld(prevs, prevs_hat).mean()
|
return nkld(prevs, prevs_hat, eps).mean()
|
||||||
|
|
||||||
|
|
||||||
def nkld(p, p_hat, eps=None):
|
def nkld(p, p_hat, eps=None):
|
||||||
|
@ -63,10 +74,10 @@ def smooth(p, eps):
|
||||||
return (p+eps)/(eps*n_classes + 1)
|
return (p+eps)/(eps*n_classes + 1)
|
||||||
|
|
||||||
|
|
||||||
def __check_eps(eps):
|
def __check_eps(eps=None):
|
||||||
import quapy as qp
|
|
||||||
sample_size = qp.environ['SAMPLE_SIZE']
|
|
||||||
if eps is None:
|
if eps is None:
|
||||||
|
import quapy as qp
|
||||||
|
sample_size = qp.environ['SAMPLE_SIZE']
|
||||||
if sample_size is None:
|
if sample_size is None:
|
||||||
raise ValueError('eps was not defined, and qp.environ["SAMPLE_SIZE"] was not set')
|
raise ValueError('eps was not defined, and qp.environ["SAMPLE_SIZE"] was not set')
|
||||||
else:
|
else:
|
||||||
|
@ -76,8 +87,10 @@ def __check_eps(eps):
|
||||||
|
|
||||||
CLASSIFICATION_ERROR = {f1e, acce}
|
CLASSIFICATION_ERROR = {f1e, acce}
|
||||||
QUANTIFICATION_ERROR = {mae, mrae, mse, mkld, mnkld}
|
QUANTIFICATION_ERROR = {mae, mrae, mse, mkld, mnkld}
|
||||||
|
QUANTIFICATION_ERROR_SMOOTH = {kld, nkld, rae, mkld, mnkld, mrae}
|
||||||
CLASSIFICATION_ERROR_NAMES = {func.__name__ for func in CLASSIFICATION_ERROR}
|
CLASSIFICATION_ERROR_NAMES = {func.__name__ for func in CLASSIFICATION_ERROR}
|
||||||
QUANTIFICATION_ERROR_NAMES = {func.__name__ for func in QUANTIFICATION_ERROR}
|
QUANTIFICATION_ERROR_NAMES = {func.__name__ for func in QUANTIFICATION_ERROR}
|
||||||
|
QUANTIFICATION_ERROR_SMOOTH_NAMES = {func.__name__ for func in QUANTIFICATION_ERROR_SMOOTH}
|
||||||
ERROR_NAMES = CLASSIFICATION_ERROR_NAMES | QUANTIFICATION_ERROR_NAMES
|
ERROR_NAMES = CLASSIFICATION_ERROR_NAMES | QUANTIFICATION_ERROR_NAMES
|
||||||
|
|
||||||
f1_error = f1e
|
f1_error = f1e
|
||||||
|
|
|
@ -61,9 +61,10 @@ def artificial_sampling_prediction(
|
||||||
return true_prevalence, estim_prevalence
|
return true_prevalence, estim_prevalence
|
||||||
|
|
||||||
pbar = tqdm(indexes, desc='[artificial sampling protocol] predicting') if verbose else indexes
|
pbar = tqdm(indexes, desc='[artificial sampling protocol] predicting') if verbose else indexes
|
||||||
results = Parallel(n_jobs=n_jobs)(
|
results = qp.util.parallel(_predict_prevalences, pbar, n_jobs=n_jobs)
|
||||||
delayed(_predict_prevalences)(index) for index in pbar
|
# results = Parallel(n_jobs=n_jobs)(
|
||||||
)
|
# delayed(_predict_prevalences)(index) for index in pbar
|
||||||
|
# )
|
||||||
|
|
||||||
true_prevalences, estim_prevalences = zip(*results)
|
true_prevalences, estim_prevalences = zip(*results)
|
||||||
true_prevalences = np.asarray(true_prevalences)
|
true_prevalences = np.asarray(true_prevalences)
|
||||||
|
@ -74,16 +75,16 @@ def artificial_sampling_prediction(
|
||||||
|
|
||||||
def evaluate(model: BaseQuantifier, test_samples:Iterable[LabelledCollection], err:Union[str, Callable], n_jobs:int=-1):
|
def evaluate(model: BaseQuantifier, test_samples:Iterable[LabelledCollection], err:Union[str, Callable], n_jobs:int=-1):
|
||||||
if isinstance(err, str):
|
if isinstance(err, str):
|
||||||
err = getattr(qp.error, err)
|
err = qp.error.from_name(err)
|
||||||
assert err.__name__ in qp.error.QUANTIFICATION_ERROR_NAMES, \
|
scores = qp.util.parallel(_delayed_eval, ((model, Ti, err) for Ti in test_samples), n_jobs=n_jobs)
|
||||||
f'error={err} does not seem to be a quantification error'
|
# scores = Parallel(n_jobs=n_jobs)(
|
||||||
scores = Parallel(n_jobs=n_jobs)(
|
# delayed(_delayed_eval)(model, Ti, err) for Ti in test_samples
|
||||||
delayed(_delayed_eval)(model, Ti, err) for Ti in test_samples
|
# )
|
||||||
)
|
|
||||||
return np.mean(scores)
|
return np.mean(scores)
|
||||||
|
|
||||||
|
|
||||||
def _delayed_eval(model:BaseQuantifier, test:LabelledCollection, error:Callable):
|
def _delayed_eval(args):
|
||||||
|
model, test, error = args
|
||||||
prev_estim = model.quantify(test.instances)
|
prev_estim = model.quantify(test.instances)
|
||||||
prev_true = test.prevalence()
|
prev_true = test.prevalence()
|
||||||
return error(prev_true, prev_estim)
|
return error(prev_true, prev_estim)
|
||||||
|
|
|
@ -559,7 +559,7 @@ class OneVsAll(AggregativeQuantifier):
|
||||||
|
|
||||||
def __parallel(self, func, *args, **kwargs):
|
def __parallel(self, func, *args, **kwargs):
|
||||||
return np.asarray(
|
return np.asarray(
|
||||||
Parallel(n_jobs=self.n_jobs, backend='threading')(
|
Parallel(n_jobs=self.n_jobs)(
|
||||||
delayed(func)(c, *args, **kwargs) for c in self.classes
|
delayed(func)(c, *args, **kwargs) for c in self.classes
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
|
@ -82,12 +82,21 @@ class Ensemble(BaseQuantifier):
|
||||||
|
|
||||||
is_static_policy = (self.policy in qp.error.QUANTIFICATION_ERROR_NAMES)
|
is_static_policy = (self.policy in qp.error.QUANTIFICATION_ERROR_NAMES)
|
||||||
|
|
||||||
self.ensemble = Parallel(n_jobs=self.n_jobs, backend="threading")(
|
args = (
|
||||||
delayed(_delayed_new_instance)(
|
(self.base_quantifier, data, val_split, prev, posteriors, is_static_policy, self.verbose, sample_size)
|
||||||
self.base_quantifier, data, val_split, prev, posteriors, keep_samples=is_static_policy,
|
for prev in prevs
|
||||||
verbose=self.verbose, sample_size=sample_size
|
|
||||||
) for prev in tqdm(prevs, desc='fitting ensamble')
|
|
||||||
)
|
)
|
||||||
|
self.ensemble = qp.util.parallel(
|
||||||
|
_delayed_new_instance,
|
||||||
|
tqdm(args, desc='fitting ensamble', total=self.size),
|
||||||
|
n_jobs=self.n_jobs)
|
||||||
|
# self.ensemble = Parallel(n_jobs=self.n_jobs)(
|
||||||
|
# delayed(_delayed_new_instance)(
|
||||||
|
# self.base_quantifier, data, val_split, prev, posteriors, keep_samples=is_static_policy,
|
||||||
|
# verbose=self.verbose, sample_size=sample_size
|
||||||
|
# ) for prev in tqdm(prevs, desc='fitting ensamble')
|
||||||
|
# )
|
||||||
|
|
||||||
|
|
||||||
# static selection policy (the name of a quantification-oriented error function to minimize)
|
# static selection policy (the name of a quantification-oriented error function to minimize)
|
||||||
if self.policy in qp.error.QUANTIFICATION_ERROR_NAMES:
|
if self.policy in qp.error.QUANTIFICATION_ERROR_NAMES:
|
||||||
|
@ -97,9 +106,12 @@ class Ensemble(BaseQuantifier):
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def quantify(self, instances):
|
def quantify(self, instances):
|
||||||
predictions = np.asarray(Parallel(n_jobs=self.n_jobs, backend="threading")(
|
predictions = np.asarray(
|
||||||
delayed(_delayed_quantify)(Qi, instances) for Qi in self.ensemble
|
qp.util.parallel(_delayed_quantify, ((Qi, instances) for Qi in self.ensemble), n_jobs=self.n_jobs)
|
||||||
))
|
)
|
||||||
|
# predictions = np.asarray(Parallel(n_jobs=self.n_jobs)(
|
||||||
|
# delayed(_delayed_quantify)(Qi, instances) for Qi in self.ensemble
|
||||||
|
# ))
|
||||||
|
|
||||||
if self.policy == 'ptr':
|
if self.policy == 'ptr':
|
||||||
predictions = self.ptr_policy(predictions)
|
predictions = self.ptr_policy(predictions)
|
||||||
|
@ -124,7 +136,7 @@ class Ensemble(BaseQuantifier):
|
||||||
For each model in the ensemble, the performance is measured in terms of _error_name_ on the quantification of
|
For each model in the ensemble, the performance is measured in terms of _error_name_ on the quantification of
|
||||||
the samples used for training the rest of the models in the ensemble.
|
the samples used for training the rest of the models in the ensemble.
|
||||||
"""
|
"""
|
||||||
error = getattr(qp.error, error_name)
|
error = qp.error.from_name(error_name)
|
||||||
tests = [m[3] for m in self.ensemble]
|
tests = [m[3] for m in self.ensemble]
|
||||||
scores = []
|
scores = []
|
||||||
for i, model in enumerate(self.ensemble):
|
for i, model in enumerate(self.ensemble):
|
||||||
|
@ -209,14 +221,8 @@ def select_k(elements, order, k):
|
||||||
return [elements[idx] for idx in order[:k]]
|
return [elements[idx] for idx in order[:k]]
|
||||||
|
|
||||||
|
|
||||||
def _delayed_new_instance(base_quantifier,
|
def _delayed_new_instance(args):
|
||||||
data: LabelledCollection,
|
base_quantifier, data, val_split, prev, posteriors, keep_samples, verbose, sample_size = args
|
||||||
val_split: Union[LabelledCollection, float],
|
|
||||||
prev,
|
|
||||||
posteriors,
|
|
||||||
keep_samples,
|
|
||||||
verbose,
|
|
||||||
sample_size):
|
|
||||||
if verbose:
|
if verbose:
|
||||||
print(f'\tfit-start for prev {F.strprev(prev)}, sample_size={sample_size}')
|
print(f'\tfit-start for prev {F.strprev(prev)}, sample_size={sample_size}')
|
||||||
model = deepcopy(base_quantifier)
|
model = deepcopy(base_quantifier)
|
||||||
|
@ -241,7 +247,8 @@ def _delayed_new_instance(base_quantifier,
|
||||||
return (model, tr_prevalence, tr_distribution, sample if keep_samples else None)
|
return (model, tr_prevalence, tr_distribution, sample if keep_samples else None)
|
||||||
|
|
||||||
|
|
||||||
def _delayed_quantify(quantifier, instances):
|
def _delayed_quantify(args):
|
||||||
|
quantifier, instances = args
|
||||||
return quantifier[0].quantify(instances)
|
return quantifier[0].quantify(instances)
|
||||||
|
|
||||||
|
|
||||||
|
@ -275,13 +282,11 @@ def _instantiate_ensemble(learner, base_quantifier_class, param_grid, optim, par
|
||||||
elif optim in qp.error.CLASSIFICATION_ERROR:
|
elif optim in qp.error.CLASSIFICATION_ERROR:
|
||||||
learner = GridSearchCV(learner, param_grid)
|
learner = GridSearchCV(learner, param_grid)
|
||||||
base_quantifier = base_quantifier_class(learner)
|
base_quantifier = base_quantifier_class(learner)
|
||||||
elif optim in qp.error.QUANTIFICATION_ERROR:
|
else:
|
||||||
base_quantifier = GridSearchQ(base_quantifier_class(learner),
|
base_quantifier = GridSearchQ(base_quantifier_class(learner),
|
||||||
param_grid=param_grid,
|
param_grid=param_grid,
|
||||||
**param_model_sel,
|
**param_model_sel,
|
||||||
error=optim)
|
error=optim)
|
||||||
else:
|
|
||||||
raise ValueError(f'value optim={optim} not understood')
|
|
||||||
|
|
||||||
return Ensemble(base_quantifier, **kwargs)
|
return Ensemble(base_quantifier, **kwargs)
|
||||||
|
|
||||||
|
@ -292,9 +297,7 @@ def _check_error(error):
|
||||||
if error in qp.error.QUANTIFICATION_ERROR or error in qp.error.CLASSIFICATION_ERROR:
|
if error in qp.error.QUANTIFICATION_ERROR or error in qp.error.CLASSIFICATION_ERROR:
|
||||||
return error
|
return error
|
||||||
elif isinstance(error, str):
|
elif isinstance(error, str):
|
||||||
assert error in qp.error.ERROR_NAMES, \
|
return qp.error.from_name(error)
|
||||||
f'unknown error name; valid ones are {qp.error.ERROR_NAMES}'
|
|
||||||
return getattr(qp.error, error)
|
|
||||||
else:
|
else:
|
||||||
raise ValueError(f'unexpected error type; must either be a callable function or a str representing\n'
|
raise ValueError(f'unexpected error type; must either be a callable function or a str representing\n'
|
||||||
f'the name of an error function in {qp.error.ERROR_NAMES}')
|
f'the name of an error function in {qp.error.ERROR_NAMES}')
|
||||||
|
|
|
@ -113,9 +113,9 @@ class GridSearchQ(BaseQuantifier):
|
||||||
if error in qp.error.QUANTIFICATION_ERROR:
|
if error in qp.error.QUANTIFICATION_ERROR:
|
||||||
self.error = error
|
self.error = error
|
||||||
elif isinstance(error, str):
|
elif isinstance(error, str):
|
||||||
assert error in qp.error.QUANTIFICATION_ERROR_NAMES, \
|
self.error = qp.error.from_name(error)
|
||||||
f'unknown error name; valid ones are {qp.error.QUANTIFICATION_ERROR_NAMES}'
|
elif hasattr(error, '__call__'):
|
||||||
self.error = getattr(qp.error, error)
|
self.error = error
|
||||||
else:
|
else:
|
||||||
raise ValueError(f'unexpected error type; must either be a callable function or a str representing\n'
|
raise ValueError(f'unexpected error type; must either be a callable function or a str representing\n'
|
||||||
f'the name of an error function in {qp.error.QUANTIFICATION_ERROR_NAMES}')
|
f'the name of an error function in {qp.error.QUANTIFICATION_ERROR_NAMES}')
|
||||||
|
|
|
@ -10,12 +10,14 @@ plt.rcParams['figure.figsize'] = [12, 8]
|
||||||
plt.rcParams['figure.dpi'] = 200
|
plt.rcParams['figure.dpi'] = 200
|
||||||
|
|
||||||
|
|
||||||
def binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=1, title=None, savepath=None):
|
def binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=1, title=None, show_std=True, legend=True, savepath=None):
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.set_aspect('equal')
|
ax.set_aspect('equal')
|
||||||
ax.grid()
|
ax.grid()
|
||||||
ax.plot([0, 1], [0, 1], '--k', label='ideal', zorder=1)
|
ax.plot([0, 1], [0, 1], '--k', label='ideal', zorder=1)
|
||||||
|
|
||||||
|
method_names, true_prevs, estim_prevs = _merge(method_names, true_prevs, estim_prevs)
|
||||||
|
|
||||||
for method, true_prev, estim_prev in zip(method_names, true_prevs, estim_prevs):
|
for method, true_prev, estim_prev in zip(method_names, true_prevs, estim_prevs):
|
||||||
true_prev = true_prev[:,pos_class]
|
true_prev = true_prev[:,pos_class]
|
||||||
estim_prev = estim_prev[:,pos_class]
|
estim_prev = estim_prev[:,pos_class]
|
||||||
|
@ -26,15 +28,17 @@ def binary_diagonal(method_names, true_prevs, estim_prevs, pos_class=1, title=No
|
||||||
y_std = np.asarray([estim_prev[true_prev == x].std() for x in x_ticks])
|
y_std = np.asarray([estim_prev[true_prev == x].std() for x in x_ticks])
|
||||||
|
|
||||||
ax.errorbar(x_ticks, y_ave, fmt='-', marker='o', label=method, markersize=3, zorder=2)
|
ax.errorbar(x_ticks, y_ave, fmt='-', marker='o', label=method, markersize=3, zorder=2)
|
||||||
ax.fill_between(x_ticks, y_ave - y_std, y_ave + y_std, alpha=0.25)
|
if show_std:
|
||||||
|
ax.fill_between(x_ticks, y_ave - y_std, y_ave + y_std, alpha=0.25)
|
||||||
|
|
||||||
ax.set(xlabel='true prevalence', ylabel='estimated prevalence', title=title)
|
ax.set(xlabel='true prevalence', ylabel='estimated prevalence', title=title)
|
||||||
ax.set_ylim(0, 1)
|
ax.set_ylim(0, 1)
|
||||||
ax.set_xlim(0, 1)
|
ax.set_xlim(0, 1)
|
||||||
|
|
||||||
box = ax.get_position()
|
if legend:
|
||||||
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
|
box = ax.get_position()
|
||||||
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
|
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
|
||||||
|
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
|
||||||
|
|
||||||
save_or_show(savepath)
|
save_or_show(savepath)
|
||||||
|
|
||||||
|
@ -43,6 +47,8 @@ def binary_bias_global(method_names, true_prevs, estim_prevs, pos_class=1, title
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.grid()
|
ax.grid()
|
||||||
|
|
||||||
|
method_names, true_prevs, estim_prevs = _merge(method_names, true_prevs, estim_prevs)
|
||||||
|
|
||||||
data, labels = [], []
|
data, labels = [], []
|
||||||
for method, true_prev, estim_prev in zip(method_names, true_prevs, estim_prevs):
|
for method, true_prev, estim_prev in zip(method_names, true_prevs, estim_prevs):
|
||||||
true_prev = true_prev[:,pos_class]
|
true_prev = true_prev[:,pos_class]
|
||||||
|
@ -51,18 +57,21 @@ def binary_bias_global(method_names, true_prevs, estim_prevs, pos_class=1, title
|
||||||
labels.append(method)
|
labels.append(method)
|
||||||
|
|
||||||
ax.boxplot(data, labels=labels, patch_artist=False, showmeans=True)
|
ax.boxplot(data, labels=labels, patch_artist=False, showmeans=True)
|
||||||
|
plt.xticks(rotation=45)
|
||||||
ax.set(ylabel='error bias', title=title)
|
ax.set(ylabel='error bias', title=title)
|
||||||
|
|
||||||
save_or_show(savepath)
|
save_or_show(savepath)
|
||||||
|
|
||||||
|
|
||||||
def binary_bias_bins(method_names, true_prevs, estim_prevs, pos_class=1, title=None, nbins=5, colormap=cm.tab10,
|
def binary_bias_bins(method_names, true_prevs, estim_prevs, pos_class=1, title=None, nbins=5, colormap=cm.tab10,
|
||||||
vertical_xticks=False, savepath=None):
|
vertical_xticks=False, legend=True, savepath=None):
|
||||||
from pylab import boxplot, plot, setp
|
from pylab import boxplot, plot, setp
|
||||||
|
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.grid()
|
ax.grid()
|
||||||
|
|
||||||
|
method_names, true_prevs, estim_prevs = _merge(method_names, true_prevs, estim_prevs)
|
||||||
|
|
||||||
bins = np.linspace(0, 1, nbins+1)
|
bins = np.linspace(0, 1, nbins+1)
|
||||||
binwidth = 1/nbins
|
binwidth = 1/nbins
|
||||||
data = {}
|
data = {}
|
||||||
|
@ -77,13 +86,13 @@ def binary_bias_bins(method_names, true_prevs, estim_prevs, pos_class=1, title=N
|
||||||
data[method].append(estim_prev[selected] - true_prev[selected])
|
data[method].append(estim_prev[selected] - true_prev[selected])
|
||||||
|
|
||||||
nmethods = len(method_names)
|
nmethods = len(method_names)
|
||||||
boxwidth = binwidth/(nmethods+1)
|
boxwidth = binwidth/(nmethods+4)
|
||||||
for i,bin in enumerate(bins[:-1]):
|
for i,bin in enumerate(bins[:-1]):
|
||||||
boxdata = [data[method][i] for method in method_names]
|
boxdata = [data[method][i] for method in method_names]
|
||||||
positions = [bin+(i*boxwidth)+boxwidth for i,_ in enumerate(method_names)]
|
positions = [bin+(i*boxwidth)+2*boxwidth for i,_ in enumerate(method_names)]
|
||||||
box = boxplot(boxdata, showmeans=False, positions=positions, widths = boxwidth, sym='+', patch_artist=True)
|
box = boxplot(boxdata, showmeans=False, positions=positions, widths = boxwidth, sym='+', patch_artist=True)
|
||||||
for boxid in range(len(method_names)):
|
for boxid in range(len(method_names)):
|
||||||
c = colormap.colors[boxid]
|
c = colormap.colors[boxid%len(colormap.colors)]
|
||||||
setp(box['fliers'][boxid], color=c, marker='+', markersize=3., markeredgecolor=c)
|
setp(box['fliers'][boxid], color=c, marker='+', markersize=3., markeredgecolor=c)
|
||||||
setp(box['boxes'][boxid], color=c)
|
setp(box['boxes'][boxid], color=c)
|
||||||
setp(box['medians'][boxid], color='k')
|
setp(box['medians'][boxid], color='k')
|
||||||
|
@ -106,18 +115,19 @@ def binary_bias_bins(method_names, true_prevs, estim_prevs, pos_class=1, title=N
|
||||||
# Tweak spacing to prevent clipping of tick-labels
|
# Tweak spacing to prevent clipping of tick-labels
|
||||||
plt.subplots_adjust(bottom=0.15)
|
plt.subplots_adjust(bottom=0.15)
|
||||||
|
|
||||||
# adds the legend to the list hs, initialized with the "ideal" quantifier (one that has 0 bias across all bins. i.e.
|
if legend:
|
||||||
# a line from (0,0) to (1,0). The other elements are simply labelled dot-plots that are to be removed (setting
|
# adds the legend to the list hs, initialized with the "ideal" quantifier (one that has 0 bias across all bins. i.e.
|
||||||
# set_visible to False for all but the first element) after the legend has been placed
|
# a line from (0,0) to (1,0). The other elements are simply labelled dot-plots that are to be removed (setting
|
||||||
hs=[ax.plot([0, 1], [0, 0], '-k', zorder=2)[0]]
|
# set_visible to False for all but the first element) after the legend has been placed
|
||||||
for colorid in range(len(method_names)):
|
hs=[ax.plot([0, 1], [0, 0], '-k', zorder=2)[0]]
|
||||||
h, = plot([0, 0], '-s', markerfacecolor=colormap.colors[colorid], color='k',
|
for colorid in range(len(method_names)):
|
||||||
mec=colormap.colors[colorid], linewidth=1.)
|
color=colormap.colors[colorid % len(colormap.colors)]
|
||||||
hs.append(h)
|
h, = plot([0, 0], '-s', markerfacecolor=color, color='k',mec=color, linewidth=1.)
|
||||||
box = ax.get_position()
|
hs.append(h)
|
||||||
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
|
box = ax.get_position()
|
||||||
ax.legend(hs, ['ideal']+method_names, loc='center left', bbox_to_anchor=(1, 0.5))
|
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
|
||||||
[h.set_visible(False) for h in hs[1:]]
|
ax.legend(hs, ['ideal']+method_names, loc='center left', bbox_to_anchor=(1, 0.5))
|
||||||
|
[h.set_visible(False) for h in hs[1:]]
|
||||||
|
|
||||||
# x-axis and y-axis labels and limits
|
# x-axis and y-axis labels and limits
|
||||||
ax.set(xlabel='prevalence', ylabel='error bias', title=title)
|
ax.set(xlabel='prevalence', ylabel='error bias', title=title)
|
||||||
|
@ -127,9 +137,24 @@ def binary_bias_bins(method_names, true_prevs, estim_prevs, pos_class=1, title=N
|
||||||
save_or_show(savepath)
|
save_or_show(savepath)
|
||||||
|
|
||||||
|
|
||||||
|
def _merge(method_names, true_prevs, estim_prevs):
|
||||||
|
ndims = true_prevs[0].shape[1]
|
||||||
|
data = defaultdict(lambda: {'true': np.empty(shape=(0, ndims)), 'estim': np.empty(shape=(0, ndims))})
|
||||||
|
method_order=[]
|
||||||
|
for method, true_prev, estim_prev in zip(method_names, true_prevs, estim_prevs):
|
||||||
|
data[method]['true'] = np.concatenate([data[method]['true'], true_prev])
|
||||||
|
data[method]['estim'] = np.concatenate([data[method]['estim'], estim_prev])
|
||||||
|
if method not in method_order:
|
||||||
|
method_order.append(method)
|
||||||
|
true_prevs_ = [data[m]['true'] for m in method_order]
|
||||||
|
estim_prevs_ = [data[m]['estim'] for m in method_order]
|
||||||
|
return method_order, true_prevs_, estim_prevs_
|
||||||
|
|
||||||
|
|
||||||
def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, n_bins=20, error_name='ae', show_std=True,
|
def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, n_bins=20, error_name='ae', show_std=True,
|
||||||
title=f'Quantification error as a function of distribution shift',
|
logscale=False,
|
||||||
savepath=None):
|
title=f'Quantification error as a function of distribution shift',
|
||||||
|
savepath=None):
|
||||||
|
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.grid()
|
ax.grid()
|
||||||
|
@ -158,6 +183,8 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, n_bins=20, e
|
||||||
for method in method_order:
|
for method in method_order:
|
||||||
tr_test_drifts = data[method]['x']
|
tr_test_drifts = data[method]['x']
|
||||||
method_drifts = data[method]['y']
|
method_drifts = data[method]['y']
|
||||||
|
if logscale:
|
||||||
|
method_drifts=np.log(1+method_drifts)
|
||||||
|
|
||||||
inds = np.digitize(tr_test_drifts, bins, right=True)
|
inds = np.digitize(tr_test_drifts, bins, right=True)
|
||||||
xs, ys, ystds = [], [], []
|
xs, ys, ystds = [], [], []
|
||||||
|
@ -196,7 +223,7 @@ def save_or_show(savepath):
|
||||||
if savepath is not None:
|
if savepath is not None:
|
||||||
qp.util.create_parent_dir(savepath)
|
qp.util.create_parent_dir(savepath)
|
||||||
# plt.tight_layout()
|
# plt.tight_layout()
|
||||||
plt.savefig(savepath)
|
plt.savefig(savepath, bbox_inches='tight')
|
||||||
else:
|
else:
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
|
|
@ -5,6 +5,7 @@ import os
|
||||||
import pickle
|
import pickle
|
||||||
import urllib
|
import urllib
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
import quapy as qp
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from joblib import Parallel, delayed
|
from joblib import Parallel, delayed
|
||||||
|
@ -19,7 +20,11 @@ def get_parallel_slices(n_tasks, n_jobs=-1):
|
||||||
range(n_jobs)]
|
range(n_jobs)]
|
||||||
|
|
||||||
|
|
||||||
def parallelize(func, args, n_jobs):
|
def map_parallel(func, args, n_jobs):
|
||||||
|
"""
|
||||||
|
Applies func to n_jobs slices of args. E.g., if args is an array of 99 items and n_jobs=2, then
|
||||||
|
func is applied in two parallel processes to args[0:50] and to args[50:99]
|
||||||
|
"""
|
||||||
args = np.asarray(args)
|
args = np.asarray(args)
|
||||||
slices = get_parallel_slices(len(args), n_jobs)
|
slices = get_parallel_slices(len(args), n_jobs)
|
||||||
results = Parallel(n_jobs=n_jobs)(
|
results = Parallel(n_jobs=n_jobs)(
|
||||||
|
@ -28,6 +33,23 @@ def parallelize(func, args, n_jobs):
|
||||||
return list(itertools.chain.from_iterable(results))
|
return list(itertools.chain.from_iterable(results))
|
||||||
|
|
||||||
|
|
||||||
|
def parallel(func, args, n_jobs):
|
||||||
|
"""
|
||||||
|
A wrapper of multiprocessing:
|
||||||
|
Parallel(n_jobs=n_jobs)(
|
||||||
|
delayed(func)(args_i) for args_i in args
|
||||||
|
)
|
||||||
|
that takes the quapy.environ variable as input silently
|
||||||
|
"""
|
||||||
|
def func_dec(environ, *args):
|
||||||
|
qp.environ = environ
|
||||||
|
return func(*args)
|
||||||
|
return Parallel(n_jobs=n_jobs)(
|
||||||
|
delayed(func_dec)(qp.environ, args_i) for args_i in args
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@contextlib.contextmanager
|
@contextlib.contextmanager
|
||||||
def temp_seed(seed):
|
def temp_seed(seed):
|
||||||
state = np.random.get_state()
|
state = np.random.get_state()
|
||||||
|
|
38
test.py
38
test.py
|
@ -9,10 +9,11 @@ import numpy as np
|
||||||
from NewMethods.methods import AveragePoolQuantification
|
from NewMethods.methods import AveragePoolQuantification
|
||||||
from classification.methods import PCALR
|
from classification.methods import PCALR
|
||||||
from classification.neural import NeuralClassifierTrainer, CNNnet
|
from classification.neural import NeuralClassifierTrainer, CNNnet
|
||||||
|
from method.meta import EPACC
|
||||||
from quapy.model_selection import GridSearchQ
|
from quapy.model_selection import GridSearchQ
|
||||||
|
|
||||||
dataset = qp.datasets.fetch_UCIDataset('sonar', verbose=True)
|
# dataset = qp.datasets.fetch_UCIDataset('sonar', verbose=True)
|
||||||
sys.exit(0)
|
# sys.exit(0)
|
||||||
|
|
||||||
|
|
||||||
qp.environ['SAMPLE_SIZE'] = 500
|
qp.environ['SAMPLE_SIZE'] = 500
|
||||||
|
@ -56,15 +57,28 @@ print(f'dataset loaded: #training={len(dataset.training)} #test={len(dataset.tes
|
||||||
#learner = LogisticRegression(max_iter=1000)
|
#learner = LogisticRegression(max_iter=1000)
|
||||||
# model = qp.method.aggregative.ClassifyAndCount(learner)
|
# model = qp.method.aggregative.ClassifyAndCount(learner)
|
||||||
|
|
||||||
learner = LogisticRegression(max_iter=1000)
|
param_mod_sel = {
|
||||||
#model = qp.method.aggregative.PACC(learner)
|
'sample_size': 100,
|
||||||
#model = qp.method.aggregative.ACC(learner)
|
'n_prevpoints': 21,
|
||||||
model = qp.method.meta.EPACC(learner, size=10, red_size=5, max_sample_size=500, n_jobs=-1,
|
'n_repetitions': 5,
|
||||||
param_grid={'C':[1,10,100]},
|
'verbose': False
|
||||||
optim='mae', param_mod_sel={'sample_size':100, 'n_prevpoints':21, 'n_repetitions':5, 'verbose':True},
|
}
|
||||||
policy='ptr',
|
common = {
|
||||||
val_split=0.4)
|
'max_sample_size': 50,
|
||||||
"""
|
'n_jobs': -1,
|
||||||
|
'param_grid': {'C': np.logspace(0,2,2), 'class_weight': ['balanced']},
|
||||||
|
'param_mod_sel': param_mod_sel,
|
||||||
|
'val_split': 0.4,
|
||||||
|
'min_pos': 10,
|
||||||
|
'size':6,
|
||||||
|
'red_size':3
|
||||||
|
}
|
||||||
|
|
||||||
|
# hyperparameters will be evaluated within each quantifier of the ensemble, and so the typical model selection
|
||||||
|
# will be skipped (by setting hyperparameters to None)
|
||||||
|
model = EPACC(LogisticRegression(max_iter=100), optim='mrae', policy='mrae', **common)
|
||||||
|
|
||||||
|
"""
|
||||||
Problemas:
|
Problemas:
|
||||||
- La interfaz es muy fea, hay que conocer practicamente todos los detalles así que no ahorra nada con respecto a crear
|
- La interfaz es muy fea, hay que conocer practicamente todos los detalles así que no ahorra nada con respecto a crear
|
||||||
un objeto con otros anidados dentro
|
un objeto con otros anidados dentro
|
||||||
|
@ -108,6 +122,8 @@ if qp.isbinary(model) and not qp.isbinary(dataset):
|
||||||
print(f'fitting model {model.__class__.__name__}')
|
print(f'fitting model {model.__class__.__name__}')
|
||||||
#train, val = dataset.training.split_stratified(0.6)
|
#train, val = dataset.training.split_stratified(0.6)
|
||||||
#model.fit(train, val_split=val)
|
#model.fit(train, val_split=val)
|
||||||
|
qp.SAMPLE=1
|
||||||
|
qp.environ['SAMPLE_SIZE']=2
|
||||||
model.fit(dataset.training)
|
model.fit(dataset.training)
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue