1
0
Fork 0

adding tables generation

This commit is contained in:
Alejandro Moreo Fernandez 2021-08-27 13:57:33 +02:00
parent aeb0fcf84b
commit daba2c9fb4
1 changed files with 75 additions and 0 deletions

75
MultiLabel/gentables.py Normal file
View File

@ -0,0 +1,75 @@
import argparse
from sklearn.calibration import CalibratedClassifierCV
from sklearn.linear_model import LogisticRegression
import itertools
from sklearn.multioutput import ClassifierChain
from tqdm import tqdm
from skmultilearn.dataset import load_dataset, available_data_sets
from scipy.sparse import csr_matrix
import quapy as qp
from MultiLabel.main import load_results
from MultiLabel.mlclassification import MultilabelStackedClassifier
from MultiLabel.mldata import MultilabelledCollection
from MultiLabel.mlquantification import MultilabelNaiveQuantifier, MLCC, MLPCC, MLRegressionQuantification, \
MLACC, \
MLPACC, MultilabelNaiveAggregativeQuantifier
from MultiLabel.tabular import Table
from method.aggregative import PACC, CC, EMQ, PCC, ACC, HDy
import numpy as np
from data.dataset import Dataset
from mlevaluation import ml_natural_prevalence_prediction, ml_artificial_prevalence_prediction, check_error_str
import sys
import os
import pickle
models = ['NaiveCC', 'NaivePCC', 'NaiveACC', 'NaivePACC', 'NaiveHDy', 'NaiveSLD']
datasets = sorted(set([x[0] for x in available_data_sets().keys()]))
def generate_table(path, protocol, error):
print(f'generating {path}')
table = Table(datasets, models)
for dataset, model in itertools.product(datasets, models):
result_path = f'{opt.results}/{dataset}_{model}.pkl'
if os.path.exists(result_path):
result = load_results(result_path)
true_prevs, estim_prevs = result[protocol]
scores = np.asarray([error(trues, estims) for trues, estims in zip(true_prevs, estim_prevs)]).flatten()
table.add(dataset, model, scores)
tabular = """
\\resizebox{\\textwidth}{!}{%
\\begin{tabular}{|c||""" + ('c|' * len(models)) + """} \hline
"""
dataset_replace = {'tmc2007_500': 'tmc2007\_500'}
method_replace = {}
tabular += table.latexTabular(benchmark_replace=dataset_replace, method_replace=method_replace)
tabular += """
\end{tabular}%
}
"""
with open(path, 'wt') as foo:
foo.write(tabular)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Experiments for multi-label quantification')
parser.add_argument('--results', type=str, default='./results', metavar='str',
help=f'path where to store the results')
parser.add_argument('--tablepath', type=str, default='./tables', metavar='str',
help=f'path where to store the tables')
opt = parser.parse_args()
os.makedirs(opt.results, exist_ok=True)
os.makedirs(opt.tablepath, exist_ok=True)
eval_error = qp.error.ae
generate_table(f'{opt.tablepath}/npp.ae.tex', protocol='npp', error=eval_error)
generate_table(f'{opt.tablepath}/app.ae.tex', protocol='app', error=eval_error)