forked from moreo/QuaPy
refactor
This commit is contained in:
parent
ab746eed8d
commit
d6abc7ac85
|
@ -1,5 +1,22 @@
|
||||||
|
Classifiers
|
||||||
|
|
||||||
|
- Classifiers binary, single-label, OneVsRest or MultiOutput:
|
||||||
|
- LR
|
||||||
|
- LinearSVC (?)
|
||||||
|
|
||||||
|
- Classifiers natively multi-label:
|
||||||
|
- from scikit-multilearn (x11)
|
||||||
|
-
|
||||||
|
|
||||||
|
Protocols:
|
||||||
|
- NPP
|
||||||
|
- APP (for each class)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Things to test:
|
Things to test:
|
||||||
- MultiChain for classification, MultiChain for regression?
|
- MultiChain for classification, MultiChain for regression...
|
||||||
|
- Reimplement stacking with sklearn.ensemble.StackingClassifier? No parece facil.
|
||||||
|
|
||||||
- Independent classifiers + independent quantifiers
|
- Independent classifiers + independent quantifiers
|
||||||
- Stacking + independent quantifiers
|
- Stacking + independent quantifiers
|
||||||
|
@ -12,3 +29,10 @@ Things to test:
|
||||||
|
|
||||||
- Model Selection for specific protocols?
|
- Model Selection for specific protocols?
|
||||||
|
|
||||||
|
TODO:
|
||||||
|
- decide methods
|
||||||
|
- decide classifiers binary
|
||||||
|
- decide classifiers multi-label
|
||||||
|
- decide quantifiers naive
|
||||||
|
- decide quantifiers multi-label
|
||||||
|
- decide datasets
|
||||||
|
|
|
@ -64,6 +64,7 @@ class MultilabelledCollection:
|
||||||
return MultilabelledCollection(documents, labels)
|
return MultilabelledCollection(documents, labels)
|
||||||
|
|
||||||
def train_test_split(self, train_prop=0.6, random_state=None):
|
def train_test_split(self, train_prop=0.6, random_state=None):
|
||||||
|
raise ValueError('use the scikit-multilearn implementation')
|
||||||
tr_docs, te_docs, tr_labels, te_labels = \
|
tr_docs, te_docs, tr_labels, te_labels = \
|
||||||
train_test_split(self.instances, self.labels, train_size=train_prop, random_state=random_state)
|
train_test_split(self.instances, self.labels, train_size=train_prop, random_state=random_state)
|
||||||
return MultilabelledCollection(tr_docs, tr_labels), MultilabelledCollection(te_docs, te_labels)
|
return MultilabelledCollection(tr_docs, tr_labels), MultilabelledCollection(te_docs, te_labels)
|
||||||
|
|
Loading…
Reference in New Issue