1
0
Fork 0

bugfix and tables generation with ResultSet

This commit is contained in:
Alejandro Moreo Fernandez 2021-01-13 11:52:50 +01:00
parent 8cc2e75534
commit cbb0d0857a
3 changed files with 239 additions and 20 deletions

View File

@ -17,11 +17,11 @@ def quantification_models():
return LogisticRegression(max_iter=1000, solver='lbfgs', n_jobs=-1) return LogisticRegression(max_iter=1000, solver='lbfgs', n_jobs=-1)
__C_range = np.logspace(-4, 5, 10) __C_range = np.logspace(-4, 5, 10)
lr_params = {'C': __C_range, 'class_weight': [None, 'balanced']} lr_params = {'C': __C_range, 'class_weight': [None, 'balanced']}
yield 'cc', qp.method.aggregative.CC(newLR()), lr_params #yield 'cc', qp.method.aggregative.CC(newLR()), lr_params
yield 'acc', qp.method.aggregative.ACC(newLR()), lr_params #yield 'acc', qp.method.aggregative.ACC(newLR()), lr_params
yield 'pcc', qp.method.aggregative.PCC(newLR()), lr_params #yield 'pcc', qp.method.aggregative.PCC(newLR()), lr_params
yield 'pacc', qp.method.aggregative.PACC(newLR()), lr_params #yield 'pacc', qp.method.aggregative.PACC(newLR()), lr_params
yield 'sld', lambda learner: qp.method.aggregative.EMQ(newLR()), lr_params yield 'sld', qp.method.aggregative.EMQ(newLR()), lr_params
def evaluate_experiment(true_prevalences, estim_prevalences): def evaluate_experiment(true_prevalences, estim_prevalences):
@ -79,7 +79,7 @@ def run(experiment):
sample_size=sample_size, sample_size=sample_size,
n_prevpoints=21, n_prevpoints=21,
n_repetitions=5, n_repetitions=5,
error='mae', error=optim_loss,
refit=False, refit=False,
verbose=True verbose=True
) )
@ -117,7 +117,7 @@ if __name__ == '__main__':
np.random.seed(0) np.random.seed(0)
optim_losses = ['mae', 'mrae'] optim_losses = ['mae', 'mrae']
datasets = qp.datasets.TWITTER_SENTIMENT_DATASETS_TRAIN datasets = ['hcr']#qp.datasets.TWITTER_SENTIMENT_DATASETS_TRAIN
models = quantification_models() models = quantification_models()
results = Parallel(n_jobs=n_jobs)( results = Parallel(n_jobs=n_jobs)(

View File

@ -0,0 +1,208 @@
from scipy.stats import wilcoxon, ttest_ind_from_stats
import numpy as np
"""
class Table:
def __init__(self):
self.tab = {}
def add(self, col, key, x):
if col not in self.tab:
self.tab[col] = ResultSet(col)
"""
class ResultSet:
VALID_TESTS = [None, "wilcoxon", "ttest_ind_from_stats"]
TTEST_DIFF = 'different'
TTEST_SIM = 'similar'
TTEST_SAME = 'same'
def __init__(self, name, addfunc, compare='mean', lower_is_better=True, show_std=True, test="wilcoxon",
remove_mean='0.', prec_mean=3, remove_std='0.', prec_std=3, maxtone=100, minval=None, maxval=None):
"""
:param name: name of the result set (e.g., a Dataset)
:param addfunc: a function which is called to process the result input in the "add" method. This function should
return a dictionary containing any key-value (e.g., 'mean':0.89) of interest
:param compare: the key (as generated by addfunc) that is to be compared in order to rank results
:param lower_is_better: if True, lower values of the "compare" key will result in higher ranks
:param show_std: whether or not to show the 'std' value (if True, the addfunc is expected to generate it)
:param test: which test of statistical significance to use. If "wilcoxon" then scipy.stats.wilcoxon(x,y) will
be computed where x,y are the values of the key "values" as computed by addfunc. If "ttest_ind_from_stats", then
scipy.stats.ttest_ind_from_stats will be called on "mean", "std", "nobs" values (as computed by addfunc) for
both samples being compared.
:param remove_mean: if specified, removes the string from the mean (e.g., useful to remove the '0.')
:param remove_std: if specified, removes the string from the std (e.g., useful to remove the '0.')
"""
self.name = name
self.addfunc = addfunc
self.compare = compare
self.lower_is_better = lower_is_better
self.show_std = show_std
assert test in self.VALID_TESTS, f'unknown test, valid are {self.VALID_TESTS}'
self.test = test
self.remove_mean = remove_mean
self.prec_mean = prec_mean
self.remove_std = remove_std
self.prec_std = prec_std
self.maxtone = maxtone
self.minval = minval
self.maxval = maxval
self.r = dict()
self.computed = False
def add(self, key, *args):
result = self.addfunc(*args)
if result is None:
return
assert 'values' in result, f'the add function {self.addfunc.__name__} does not fill the "values" attribute'
self.r[key] = result
vals = self.r[key]['values']
if isinstance(vals, np.ndarray):
self.r[key]['mean'] = vals.mean()
self.r[key]['std'] = vals.std()
self.r[key]['nobs'] = len(vals)
self.computed = False
def compute(self):
keylist = np.asarray(list(self.r.keys()))
vallist = [self.r[key][self.compare] for key in keylist]
keylist = keylist[np.argsort(vallist)]
minval = min(vallist) if self.minval is None else self.minval
maxval = max(vallist) if self.maxval is None else self.maxval
if not self.lower_is_better:
keylist = keylist[::-1]
# keep track of statistical significance tests; if all are different, then the "phantom dags" will not be shown
self.some_similar = False
for i, key in enumerate(keylist):
rank = i + 1
isbest = rank == 1
if isbest:
best = self.r[key]
self.r[key]['best'] = isbest
self.r[key]['rank'] = rank
#color
val = self.r[key][self.compare]
val = (val-minval)/(maxval-minval)
if self.lower_is_better:
val = 1-val
self.r[key]['color'] = color_red2green_01(val, self.maxtone)
if self.test is not None:
if isbest:
p_val = 0
elif self.test == 'wilcoxon':
_, p_val = wilcoxon(best['values'], self.r[key]['values'])
elif self.test == 'ttest_ind_from_stats':
mean1, std1, nobs1 = best['mean'], best['std'], best['nobs']
mean2, std2, nobs2 = self.r[key]['mean'], self.r[key]['std'], self.r[key]['nobs']
_, p_val = ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2)
if 0.005 >= p_val:
self.r[key]['test'] = ResultSet.TTEST_DIFF
elif 0.05 >= p_val > 0.005:
self.r[key]['test'] = ResultSet.TTEST_SIM
self.some_similar = True
elif p_val > 0.05:
self.r[key]['test'] = ResultSet.TTEST_SAME
self.some_similar = True
self.computed = True
def latex(self, key, missing='--', color=True):
if key not in self.r:
return missing
if not self.computed:
self.compute()
rd = self.r[key]
s = f"{rd['mean']:.{self.prec_mean}f}"
if self.remove_mean:
s = s.replace(self.remove_mean, '.')
if rd['best']:
s = "\\textbf{"+s+"}"
else:
if self.test is not None and self.some_similar:
if rd['test'] == ResultSet.TTEST_SIM:
s += '^{\dag\phantom{\dag}}'
elif rd['test'] == ResultSet.TTEST_SAME:
s += '^{\ddag}'
elif rd['test'] == ResultSet.TTEST_DIFF:
s += '^{\phantom{\ddag}}'
if self.show_std:
std = f"{rd['std']:.{self.prec_std}f}"
if self.remove_std:
std = std.replace(self.remove_std, '.')
s += f" \pm {std}"
s = f'$ {s} $'
if color:
s += ' ' + self.r[key]['color']
return s
def mean(self, attr='mean', required:int=None):
"""
returns the mean value for the "key" attribute
:param attr: the attribute to average across results
:param required: if specified, indicates the number of values that should be part of the mean; if this number
is different, then the mean is not computed
:return: the mean of the "key" attribute
"""
keylist = list(self.r.keys())
vallist = [self.r[key].get(attr, None) for key in keylist]
if None in vallist:
return None
if required is not None:
if len(vallist) != required:
return None
return np.mean(vallist)
def get(self, key, attr, missing='--'):
if key in self.r:
if attr in self.r[key]:
return self.r[key][attr]
return missing
def color_red2green_01(val, maxtone=100):
assert 0 <= val <= 1, f'val {val} out of range [0,1]'
# rescale to [-1,1]
val = val * 2 - 1
if val < 0:
color = 'red'
tone = maxtone * (-val)
else:
color = 'green'
tone = maxtone * val
return '\cellcolor{' + color + f'!{int(tone)}' + '}'
def add(x):
r = np.random.rand(100)/2+x
return {
'values': r
}
"""
r = ResultSet('dataset1', addfunc=add, show_std=False, minval=0, maxval=1)
for x in range(10):
r.add(f'a{x}', np.random.randint(0,5) / 10)
print(r.name)
for x in range(10):
key = f'a{x}'
print(r.latex(key), r.get(key, 'rank'))
print('----')
print(f'ave: {r.mean():.3f}')
print(f'averank: {r.mean("rank"):.3f}')
"""

View File

@ -4,6 +4,8 @@ from os import makedirs
import sys, os import sys, os
import pickle import pickle
from experiments import result_path from experiments import result_path
from result_manager import ResultSet
tables_path = './tables' tables_path = './tables'
MAXTONE = 50 # sets the intensity of the maximum color reached by the worst (red) and best (green) results MAXTONE = 50 # sets the intensity of the maximum color reached by the worst (red) and best (green) results
@ -26,6 +28,8 @@ qp.environ['SAMPLE_SIZE'] = sample_size
nice = { nice = {
'mae':'AE', 'mae':'AE',
'mrae':'RAE', 'mrae':'RAE',
'ae':'AE',
'rae':'RAE',
'svmkld': 'SVM(KLD)', 'svmkld': 'SVM(KLD)',
'svmnkld': 'SVM(NKLD)', 'svmnkld': 'SVM(NKLD)',
'svmq': 'SVM(Q)', 'svmq': 'SVM(Q)',
@ -43,8 +47,7 @@ nice = {
'semeval15': 'SemEval15', 'semeval15': 'SemEval15',
'semeval16': 'SemEval16' 'semeval16': 'SemEval16'
} }
# }
# }
def nicerm(key): def nicerm(key):
@ -74,18 +77,23 @@ def save_table(path, table):
# Tables evaluation scores for AE and RAE (two tables) # Tables evaluation scores for AE and RAE (two tables)
# ---------------------------------------------------- # ----------------------------------------------------
datasets = qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST datasets = qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST
evaluation_measures = [qp.error.mae, qp.error.mrae] evaluation_measures = [qp.error.ae, qp.error.rae]
gao_seb_methods = ['cc', 'acc', 'pcc', 'pacc', 'emq', 'svmq', 'svmkld', 'svmnkld'] gao_seb_methods = ['cc', 'acc', 'pcc', 'pacc', 'emq', 'svmq', 'svmkld', 'svmnkld']
results_dict = {} results_dict = {}
stats={} stats={}
def getscore(dataset, method, loss): def addfunc(dataset, method, loss):
path = result_path(dataset, method, loss) path = result_path(dataset, method, 'm'+loss if not loss.startswith('m') else loss)
if os.path.exists(path): if os.path.exists(path):
true_prevs, estim_prevs, _, _, _, _ = pickle.load(open(path, 'rb')) true_prevs, estim_prevs, _, _, _, _ = pickle.load(open(path, 'rb'))
err = getattr(qp.error, loss) err_fn = getattr(qp.error, loss)
return err(true_prevs, estim_prevs) errors = err_fn(true_prevs, estim_prevs)
return {
'values': errors,
}
return None return None
@ -96,6 +104,14 @@ for i, eval_func in enumerate(evaluation_measures):
nold_methods = len(gao_seb_methods) nold_methods = len(gao_seb_methods)
nnew_methods = len(added_methods) nnew_methods = len(added_methods)
# fill table
TABLE = {}
for dataset in datasets:
TABLE[dataset] = ResultSet(dataset, addfunc, show_std=False, test="ttest_ind_from_stats", maxtone=50,
remove_mean='0.' if eval_func == qp.error.ae else '')
for method in methods:
TABLE[dataset].add(method, dataset, method, eval_name)
tabular = """ tabular = """
\\begin{tabularx}{\\textwidth}{|c||""" + ('Y|'*len(gao_seb_methods))+ '|' + ('Y|'*len(added_methods)) + """} \hline \\begin{tabularx}{\\textwidth}{|c||""" + ('Y|'*len(gao_seb_methods))+ '|' + ('Y|'*len(added_methods)) + """} \hline
& \multicolumn{"""+str(nold_methods)+"""}{c||}{Methods tested in~\cite{Gao:2016uq}} & \multicolumn{"""+str(nnew_methods)+"""}{c||}{} \\\\ \hline & \multicolumn{"""+str(nold_methods)+"""}{c||}{Methods tested in~\cite{Gao:2016uq}} & \multicolumn{"""+str(nnew_methods)+"""}{c||}{} \\\\ \hline
@ -108,12 +124,7 @@ for i, eval_func in enumerate(evaluation_measures):
for dataset in datasets: for dataset in datasets:
tabular += nice.get(dataset, dataset.upper()) + ' ' tabular += nice.get(dataset, dataset.upper()) + ' '
for method in methods: for method in methods:
#simplify... tabular += ' & ' + TABLE[dataset].latex(method)
score = getscore(dataset, method, eval_name)
if score:
tabular += f' & {score:.3f} '
else:
tabular += ' & --- '
tabular += '\\\\\hline\n' tabular += '\\\\\hline\n'
tabular += "\end{tabularx}" tabular += "\end{tabularx}"